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Estimates  of data  uncertainties  are  required  to  integrate  different  observational  data  streams  as model
constraints  using  model–data  fusion.  We  describe  an  approach  with  which  random  and  systematic
uncertainties  in optical  measurements  of  leaf  area  index  [LAI]  can be quantified.  We  use  data  from  a
measurement  campaign  at the  spruce-dominated  Howland  Forest  AmeriFlux  site for  illustrative  pur-
poses.  We  made  measurements  along  two  transects  (one  in  a mature  stand,  one in a  recently  harvested
shelterwood)  before  sunset  on successive  days  using  both  the  Li-Cor  LAI-2000  plant  canopy  analyzer  and
digital hemispherical  photography  (DHP).  The  random  measurement  uncertainty  (1�)  at  a given  point  for
a single  measurement  is about  5%  for  LAI-2000  and  10%  for DHP.  These  uncertainties  are  small  compared
ata–model fusion
eaf area index
ncertainty

to potential  systematic  biases  due  to instrument  calibration  errors  and  data  processing  decisions,  which
are  estimated  to be 10–20%  for each  instrument.  Sampling  uncertainty  (due  to the  spatial  variability
along  each  transect  where  we conducted  our  measurements)  is  an  additional,  but  again  relatively  small,
uncertainty.  Assumptions  about  clumping  parameters,  for  which  standard  literature  values  are  typically
used, remain  large  sources  of  uncertainty.  This  analysis  can  also  be used  to develop  strategies  to  reduce
measurement  uncertainties.
. Introduction

The model–data fusion approach essentially combines a process-
ased model structure with observational constraints and an
ptimization routine with which model parameters and states, and
heir respective uncertainties, are estimated conditional on the data
Raupach et al., 2005; Williams et al., 2005, 2009). Inverse anal-
ses conducted in this manner are thus a combined product that
everages the structure of the model as well as the information con-
ent of data, thereby improving on more conventional model-only
r data-only approaches. Central to model–data fusion are tech-
iques that permit full propagation of data and model uncertainties

n a thorough and statistically defensible manner (e.g., Richardson
t al., 2010); thus model predictions can be reported not just as a
ingle value but as a range of values (i.e., the confidence limits)
ithin which the “true” value is expected to fall. This informa-

ion is required for risk assessment, decision support, and other
olicy-relevant applications.
A range of different types of data may  be used as observational
onstraints. For example, with carbon [C] cycle models, informa-
ion on both ecosystem state variables (e.g., measurements of C

∗ Corresponding author.
E-mail address: arichardson@oeb.harvard.edu (A.D. Richardson).

168-1923/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.agrformet.2011.05.009
© 2011 Elsevier B.V. All rights reserved.

stocks or pools: above- and below-ground biomass C, organic and
mineral soil C) and associated rates of change (e.g., measurements
of C fluxes: photosynthesis, autotrophic and heterotrophic respira-
tion, litterfall) can be incorporated within the model–data fusion
framework. However, this requires uncertainty estimates (�i,j) for
each observation y of data stream i at time j (yi,j). In the standard
approach (Raupach et al., 2005), observations are weighted accord-
ing to our confidence in the data (i.e., as 1/�2

i,j
in weighted least

squares optimization) so that observations in which we have more
confidence exert greater influence on the outcome of the analysis.
As (Raupach et al., 2005) noted emphatically, “[g]iven the impor-
tance of data uncertainties, there is an urgent need for soundly
based uncertainty characterizations for the main kinds of data used
in terrestrial carbon observation”.

Methods to quantify the time-varying nature of uncertainty
in ecosystem-scale measurements of carbon, water and energy
fluxes have been developed (e.g., Hollinger and Richardson, 2005;
Richardson et al., 2006), and similar approaches have been applied
to chamber-based measurements of soil respiratory fluxes (Savage
et al., 2008). Uncertainties in forest inventory and ecosystem carbon
and nutrient budget calculations have been investigated by Chave

et al. (2004),  Harmon et al. (2007),  and Yanai et al. (2010).  How-
ever, for many other types of ecosystem measurements, rigorous
uncertainty estimates (or methods to obtain these estimates) have
not been presented in the literature.

dx.doi.org/10.1016/j.agrformet.2011.05.009
http://www.sciencedirect.com/science/journal/01681923
http://www.elsevier.com/locate/agrformet
mailto:arichardson@oeb.harvard.edu
dx.doi.org/10.1016/j.agrformet.2011.05.009
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One such ecosystem parameter lacking adequate uncertainty
stimates is leaf area index (LAI). LAI is a measure of carbon allo-
ation to photosynthetic organs, as well as the potential for light
nterception by the canopy (Chen et al., 1997; Gower et al., 1999;
reda, 2003). Accurate assessment of LAI is essential for scaling

eaf-level measurements to canopy-level; both Bonan (1993) and
illiams et al. (2001) demonstrated that model-based productivity

stimates were extremely sensitive to LAI. The seasonal dynamics
f LAI also provide information about phenological processes of
evelopment and senescence.

Here we present results from a LAI measurement campaign at
 spruce-dominated forest in north-central ME,  USA. We  use these
ata to derive estimates of the potential random and systematic
easurement errors in leaf area index measured using two widely

sed instrument-based optical techniques. Our objective is to doc-
ment this approach to quantifying LAI measurement uncertainty,
o that these uncertainties can be accounted for when LAI data
re used as observational constraints in future model–data fusion
fforts.

. Methods

.1. Study site

The Howland Forest (45.20◦N, 68.74◦W)  is located in central
aine at the southern ecotone of the North American boreal zone

hat extends north and west from Maine across thousands of
ilometers. The forest at Howland is generally classified as “spruce-
r” type and consists of red spruce, and eastern hemlock, which
ogether account for over 70% of the tree biomass. Topography is
at to gently rolling. The site is a member of the AmeriFlux network,
nd eddy covariance measurements of carbon, water and energy
uxes have been conducted here since 1996 (Hollinger et al., 2004).

The undisturbed stand (mean stand age ≈ 110 y, maximum
tand age ≈ 215 y; basal area 48 ± 17 m2 ha−1, mean ± 1 s.d., based
n 48 FIA-style inventory plots) at the “Main tower” is atypical
f contemporary Maine, particularly the surrounding landscape,
here intensive forestry activities have taken place for over a cen-

ury. In a nearby stand (“Block A”), a shelterwood harvest in 2007
emoved approximately 40–50% of the basal area of canopy trees.
he closed canopy in the Main stand contrasts sharply with the
pen canopy of Block A (Fig. 1).

.2. Leaf area index measurements

Optical instruments to measure LAI quantify gap fraction, essen-
ially the probability of direct beam radiation penetrating through
he canopy (e.g., Ryu et al., 2010). A 200 m transect, running in a
-S direction, was laid out in the Main stand; a similar transect,

unning E-W, was laid out in Block A. Measurement points were
stablished at 10 m intervals and marked with flags. We  walked
ach transect twice, on successive evenings, conducting simulta-
eous measurements each evening with both an LAI-2000 (Li-Cor
iosciences, Lincoln, NE) plant canopy analyzer, and a digital hemi-
pherical photography (DHP) camera (Nikon Coolpix 4500) with a
80◦ fisheye lens (Nikon FC-E8) and monopod with a self-leveling
ount (Hemiview SLM4, Delta-T Devices, Cambridge UK). All mea-

urements were made at breast height (1.3 m above ground level).
easurements were conducted only when the sun was less than

5◦ above the horizon, based on standard astronomical tables. It
ook roughly 30 min  to conduct a set of measurements along a

ingle transect.

We used a pair of LAI-2000 wands. After cross-calibration and
lock synchronization, following the manufacturer’s instructions,
he reference wand was mounted above the canopy on the 25 m
Fig. 1. Digital hemispherical photography images of the canopy in the Main (top)
and Block A (bottom) stands at Howland Forest.

high walk-up tower used for eddy covariance flux measurements.
LAI-2000 data were processed using Li-Cor’s FV2000 software pro-
gram (http://envsupport.licor.com/docs/FV2000Manual.pdf).

For DHP images, we used a fixed exposure for each transect,
rather than autoexpose each image. The importance of a consis-
tent exposure has been emphasized by Leblanc (2005).  We  spot
metered off the sky at zenith, then intentionally over-exposed the
subsequent images by 2 full stops. When done in this way, there is
strong contrast between foliage (dark) and sky (light), and at least
in principle the threshold for separating foliage from sky should
be the same in all images. Imagery was  processed using the DHP
software program (Leblanc, 2005).

Following Chen et al. (2006),  leaf area index, L, is calculated as:

L = (1 − ˛)Le�E

˝E
(1)

where  ̨ is the woody-to-total leaf area ratio, Le is the effective

(i.e., measured; technically speaking, what we are actually measur-
ing is PAI, or plant area index, since branches and stems, as well as
foliage, are included in our measurements) LAI, �E is the needle-to-
shoot area ratio, and ˝E is the beyond-shoot clumping index. We

http://envsupport.licor.com/docs/FV2000Manual.pdf
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sed literature values for black spruce, from Chen et al. (2006),  for
 (0.15) and � (1.6), as both parameters are labor-intensive to mea-
ure. For conifers, typical values are 0.10–0.20 for  ̨ 1.4–1.9 for �E.
or non-flat leaves, the measure of LAI thus obtained equals one-
alf of the total intercepting area per unit ground surface area, as
roposed by Chen and Black (1992).

LAI-2000 and DHP were used to determine Le for each mea-
urement point. We  expected ˝E to differ between Main and
lock A, because the large canopy gaps resulting from the shelter-
ood should be manifest as substantial beyond-shoot clumping. By

omparison, the closed canopy is much more uniform in the undis-
urbed forest around the Main tower. The theory and practice of

easuring ˝E is beyond the scope of this brief note (see, for exam-
le, Leblanc, 2005; Chen et al., 2006), but we note that it can be
stimated either with the TRAC (Tracing Radiation and Architec-
ure of Canopies; Leblanc et al., 2005) instrument, or by processing
he DHP images into “TRAC-like transects” which are then analyzed
y software for the TRAC instrument (Leblanc, 2005). Using the lat-
er approach, we determined values of 0.98 (Main) and 0.88 (Block
) for ˝E. Ryu et al. (2010) have argued that the FV2000 software,
ecause it calculates Le as the mean of the logarithms of the indi-
idual gap fraction measurements, rather than the logarithm of the
ean gap fraction, already incorporates an apparent clumping fac-

or. Based on their analysis, Ryu et al. (2010) estimated apparent
lumping values of 0.96 and 0.89 for Main and Block A, respec-
ively. Ryu et al. (2010) propose that if the FV2000 approach is
sed, then the ˝E term should be dropped from Eq. [1] to avoid
ouble-counting of clumping effects.

Uncertainties in ˝E,  ̨ and � are not explicitly considered here.
hen (1996) reported uncertainties of roughly 10% for each of these
erms.

. Results

.1. Spatial patterns and sampling uncertainty

For the Main transect, the LAI-2000 measured a somewhat
igher mean Le than DHP (4.08 vs. 3.61, based on the arithmetic
ean of the point measurements, cf. Ryu et al., 2010), but for Block
, both instruments were similar (1.85 vs. 1.82, respectively). Spa-

ial patterns along the two transects were comparable for both
nstruments, as illustrated in Fig. 2. On the first day of measure-
ents, the spatial correlation of LAI-2000 Le vs. DHP Le was r = 0.92
or the Main transect and r = 0.97 for Block A (averaged across both
ays of measurements, the corresponding values are both r = 0.98).
his increases our confidence in the ability of each instrument to
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ig. 3. Agreement between repeat leaf area index measurements (“effective” LAI, Le, in m
wo  different measurement techniques, the LAI-2000 plant canopy analyzer (left) and dig
using two different measurement techniques, the LAI-2000 plant canopy analyzer
(open symbols) and digital hemispherical photography (DHP, filled symbols). Data
are shown for the first day of measurements.

detect differences in canopy structure. The observed standard devi-
ation of Le was 0.60 for the Main transect and 0.70 for Block A,
indicating a sampling uncertainty (one standard error) for each
transect of roughly 0.15 given n = 20 measurement points.

For comparison, periodic LAI-2000 measurements (mid-
summer in 1998, 2001, 2003, and 2006) at a wider network of 24
plots around the main tower indicated an arithmetic mean Le of
3.9, with a mean spatial variability (one standard deviation, aver-
age for each of the four years) of 0.4, and a sampling uncertainty
(one standard error) of 0.1. Thus, mean Le along the Main transect is
similar to that for the forest as a whole surrounding the Main tower,
but there is somewhat more spatial variability along the transect
compared to the wider network of plots.

3.2. Random uncertainty and bias from repeat measurements

The LAI-2000 measurements were more repeatable, with a
mean absolute difference (between Le measured on the first pass
and Le measured on the second pass) of 0.14, compared with 0.26
for DHP. Including both transects, the linear correlation between
measurements on the first pass and those on the second pass was
correspondingly higher for LAI 2000 (r = 0.994) than DHP (r = 0.977),
but this statistic tends to mask the appreciably better performance

(clearly visible as reduced scatter in Fig. 3) of the LAI-2000 com-
pared to DHP.

In previous work (Hollinger and Richardson, 2005), we showed
how paired flux measurements (e.g., simultaneous measurements
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2 m−23) along two transects (“Main” and “Block A”) at the Howland Forest, using
ital hemispherical photography (DHP, right). Dotted diagonal line is 1:1.
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rom two towers with non-overlapping measurement footprints)
ould be used to estimate the statistics of the random flux measure-
ent error; basically, if xi,1 and xi,2 are the paired measurements

t time i, and ε is the random measurement error associated with
ach x, then �(ε) = �(xi,1 − xi,2)/

√
2 where the standard deviation

s computed across all pairs xi,1 and xi,2. In an analogous manner,
e used the repeat measurements along each transect (subscript

 now denoting plot number, and measurements 1 and 2 refer-
ing to the first and second pass along each transect) as the basis
or quantifying random LAI measurement uncertainty. With this

ethod, we estimate the standard deviation of the random mea-
urement uncertainty, �(ε), for LAI-2000 as 0.20 and 0.07 for Main
nd Block A, respectively (∼5% in both cases). For DHP, the corre-
ponding values were 0.27 and 0.19 (∼10%). We  could not reject
he hypothesis that the relative measurement errors are normally
istributed.

The mean difference, �(xi,1 − xi,2), gives us an order-of-
agnitude estimate of potential bias due to daily calibration errors

r differences in measured Le that result from differences in sky
onditions (e.g. changes in cloudiness and, consequently, scatter-
ng). For both instruments, Le measured on the first pass was
omewhat higher than on the second pass, as can be seen from
he offset against the 1-1 line in Fig. 3. For the LAI-2000, the

ean difference was similar in magnitude between Main (arith-
etic mean Le = 4.12 vs. 4.04, or 2%) and Block A (Le = 1.92 vs. 1.78,

r ∼10%), whereas for DHP the difference between measurement
ates was much larger in Main (Le = 3.78 vs. 3.43, or 10%) than Block

 (Le = 1.83 vs. 1.81, or 1%). Thus, for both instruments, calibration
rrors may  easily lead to systematic biases of 10% or more.

.3. Other sources of uncertainty

The ratio of Le measured with the LAI-2000 to Le measured
y DHP decreased by 10–20% over the course of walking each
ransect. This pattern was  not caused by differential instrument
ensitivities to a canopy structural gradient along the transect,
s the pattern was observed both on the first pass and the sec-
nd pass, when the transect was walked in reverse direction.
hat is, on the first day of measurements, the ratio declined from
1.2 to 1.0 over the course of walking out along the transect,

rom measurement point 1 to 20. On the second day of mea-
urements, the ratio declined from ∼1.2 to 1.1 as we  walked in
long the transect, from point 20 to 1. Thus, the offset between
he two instruments varied along the length of the transect, in

 predictable, time-varying way. On the first day, the lowest off-
et was for plots 11–20, whereas on the second day, for plots
–10. We  attribute this pattern to changing illumination condi-
ions (sky brightness) over the time it took to walk each transect,
nd the fact that the DHP exposure was kept constant. The dense
anopy along the Main transect made more frequent exposure
djustment essentially impossible. Our experience (from an earlier
easurement campaign), substantiated by reports of Chen et al.

2006) and others, was that automatic determination of the expo-
ure for each DHP image would result in measurements of Le that
ere not repeatable. By comparison, the express purpose of the

AI-2000 reference wand is to allow correction for changing con-
itions.

For both LAI-2000 and DHP, the raw data may  be processed in
ifferent ways. The LAI-2000 calculates Le on the basis of trans-
ittance through the canopy at five different zenith angles. Chen

t al. (2006) note that multiple scattering by leaves is a potential
ource of underestimation of LAI at large zenith angles. Chen et al.

2006) suggest comparing Le for rings 1–5 with Le for rings 1–3
i.e., omitting rings 4 and 5, corresponding to zenith angles 45–60◦

nd 60–75◦, respectively). We  found that Le calculated for rings 1–3
ended to be about 20% higher than Le calculated for all rings (4.93
st Meteorology 151 (2011) 1287– 1292

vs. 4.12 for Main, 2.32 vs. 1.92 for Block A), and therefore acknowl-
edge this as a potential bias in our estimates of Le. However, our
analysis indicated that repeatability was better when all rings were
used.

Similarly, DHP images can be analyzed using either the whole
image (0–81◦; following Miller’s integration, see Leblanc, 2005), or
just certain zenith angle rings. Our results indicated better agree-
ment between the first and second passes along each transect when
the whole image was used, compared to individual rings. As was
observed with the LAI-2000, higher zenith angle rings (i.e., 58.5◦)
generally gave 10–20% lower Le estimates than lower zenith angle
rings (i.e., 40.5◦) for DHP, although on the second pass along the
Main transect, exceptions to this were observed.

4. Discussion

Several previous papers have reported estimates of LAI mea-
surement uncertainty, but the methods on which these estimates
are based have not always been clear. Welles and Norman (1991)
reported that repeated measurements within several minutes dif-
fered by <2%, whereas repeated measurements on the same day but
hours apart differed by up to 10%. Ultimately, they concluded that
LAI error was less than 15%. Chen (1996) and Chen et al. (2006)
reported that instrument errors together resulted in uncertain-
ties of less than 5% for Le, but did not explain how this value was
determined. Hyer and Goetz (2004) noted LAI uncertainties due
to differences associated with specific models of instrument, data
processing, and varying sky conditions, but did not quantify the
standard deviation of the uncertainty for each of these terms. Pre-
vious modeling papers have assigned uncertainty to measured LAI
without explaining the derivation of these uncertainty estimates
(10%: Williams et al., 2005; Fox et al., 2009; 10–30%: Raupach et al.,
2005).

Our objective here has been to develop, in a transparent manner,
uncertainty estimates for leaf area index (LAI) measurements made
using two commonly used optical instrument-based approaches,
the LAI-2000 plant canopy analyzer and digital hemispherical pho-
tography. These uncertainties are needed so that LAI data can be
incorporated into data–model fusion analyses in a statistically rig-
orous manner (e.g., Richardson et al., 2010). An important aspect
of this is using the uncertainties to judge when data and model
are consistent or inconsistent—i.e., if the data–model mismatch is
significantly larger than the inherent data uncertainties, then this
indicates the presence of substantial model structural errors, which
should be addressed by changes to the model itself.

Sampling uncertainty arises from conducting a finite number of
measurements rather than a complete census of the entire ecosys-
tem. We  estimate the Le sampling uncertainty (one standard error)
to be about 0.15 for each transect, given n = 20 measurement points.
More extensive sampling in each stand would be one way to reduce
the sampling uncertainty.

We  have proposed that repeat measurements of a transect or
set of plots, when made over a sufficiently short time interval that
changes in the state of the canopy are likely to be negligible, can
be used to quantify additional uncertainties in leaf are index mea-
surements. Rather than directly compare the measurements from
two different instruments (e.g., Figs. 1 and 2 in Chen et al., 2006),
we instead compared two  sets of measurements from the same
instrument (our Fig. 3), and inferred the statistics of the random
measurement error from the difference in paired measurements.
For an individual measurement, random errors (1�) were roughly

twice as large for digital hemispherical photography (∼10%) as for
the LAI-2000 plant canopy analyzer (∼5%). The impact of these ran-
dom errors would be reduced by averaging across multiple plots or
measurement points. (To the extent that random errors are partially
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ttributable to operator error—including, but not limited to factors
uch as the sensor head not being perfectly level, or not being pre-
isely located directly over the plot center—random errors can also
e reduced by an attentive and skilled instrument operator.)

Another source of uncertainty is systematic bias due to instru-
ent calibration. With only two measurements of each transect,
e do not have a lot of data with which to estimate the magnitude

f this potential error, but for both instruments, systematic errors
f 10% or more are clearly possible. This error is systematic because
t affects all measurements made with a particular calibration, and
hus the impact is not reduced by averaging across multiple plots
r measurement points. However, the bias has a random com-
onent because the calibration error is inherently stochastic. For
HP, changing light levels over the course of measurements is an
dditional source of time-varying bias, which may  be difficult to
uantify. Correction for this should be possible, however, by mea-
uring a specific reference plot immediately after, and then again
mmediately before, changing the camera exposure setting. With
areful cross-calibration of the LAI-2000 wands, or exposure setting
or DHP, these calibration errors can probably be largely reduced if
ot eliminated.

Data processing (e.g., selection of different zenith angle rings)
ecisions may  add additional uncertainty. For example, multiple
cattering by leaves at high zenith angles may  result in system-
tic under-estimation of Le if data from all zenith angles are used;
mitting rings 4 and 5 from the LAI-2000 calculations resulted in a
0% increase in Le. Corrections for multiple scattering are discussed
y Chen et al. (2006),  but require assumptions (e.g., spherical leaf
ngle distribution) which may  not be valid for all vegetation types.
valuation of optical measurements against different types of leaf
rea index (e.g., from litterfall traps or destructive sampling, e.g.,
ower et al., 1999; Breda, 2003) data may  be useful for resolving

hese issues, but the uncertainties of the other data must also be
ept in perspective as well—a true reference value for LAI is diffi-
ult, if not impossible, to obtain (see, for example, the analysis of
tatistical uncertainty in allometric estimates of LAI provided by

oods et al., 1991).
Some of the systematic biases we have not attempted to quan-

ify, such as those associated with the specific values chosen for
arameters ˝E,  ̨ and � in Eq. (1),  are no doubt important as well,
articularly if data from different sites (where different assump-
ions about these parameters may  have been made) are being
nalyzed together. Furthermore, the new method for averaging
ndividual Le measurements, as proposed by Ryu et al. (2010),
hould be adopted to adequately account for clumping.

Although combining random and systematic error components
nto a single quantity is appealing, it is also a challenge, and there is
o universally agreed-upon method for doing so (Petersen et al.,
001). Systematic errors must be corrected before the data are

ntroduced into the model–data fusion scheme, or the bias may
e propagated forward (Williams et al., 2009). Because LAI is a crit-

cal parameter for scaling traits and processes from leaf-level to
cosystem-level, reconciliation of these biases is essential.

.1. Summary and conclusion

Rather than advocate the use of one instrument over another
i.e., LAI-2000 vs. DHP), our objective here has been to present
n approach to quantifying random and systematic errors in pro-
ected leaf area index measurements. These data are needed to
ncorporate LAI measurements into a multiple-constraints data

odel fusion analysis. Mis-representation or under-estimation of

ata uncertainties may  lead to inaccurate modeling results being
ssigned high confidence. As an example, uncertainty estimates
ffect how well the model predictions must “hit” the measured
alues. If LAI uncertainties are over-estimated, then the amount
st Meteorology 151 (2011) 1287– 1292 1291

of information contributed by these data to the analysis will be
reduced, because a poor data–model mismatch may  still yield
a statistically “acceptable” fit. By comparison, if LAI uncertain-
ties are under-estimated, the model may be “pulled” towards
tracking poor-quality leaf area measurements in which we  are
over-confident, at the expense of less accurate representation of
other model components.

This kind of error analysis is also needed to inform efforts
at reducing measurement uncertainties. Given our sample size,
random uncertainties are substantially smaller than the spatial
variation, as well as possible biases resulting from processing deci-
sions (i.e., Which zenith rings should be used to estimate Le?), and
potential systematic calibration errors. Careful attention to cali-
bration, and the designation of individual measurement points for
reference measurements, should help to keep calibration errors to
an acceptable level.

Which of these errors are most important will likely vary
depending on the nature of the analyses being conducted. Some
systematic errors may  not be relevant if, for example, monthly
measurements from a set of plots at a single site are being used to
inform modeling of seasonality or phenological processes. On the
other hand, sampling uncertainty and choice of clumping param-
eter values may  be the dominant sources of uncertainty if data
from different sites are being incorporated in a regional carbon
budget analysis. We  note also that the nature of these uncertain-
ties may  vary from site to site, depending on site characteristics,
sampling protocols, and so forth. Thus, we have described here a
framework for quantifying different sources of error in LAI mea-
surement, but have intentionally stopped short of providing a
universally applicable estimate of “the uncertainty”, because the
relevant uncertainties are context-dependent.
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