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Dispersal has been proposed as an important mechanism in the broad-scale synchronisation of insect outbreaks by linking
spatially disjunct populations. Evidence suggests that dispersal is influenced by landscape structure, phenology,
temperature, and air currents; however, the details remain unclear due to the difficulty of quantifying dispersal. In this
study, we used data on the abundance and distribution of spruce budworm Choristoneura fumiférana larvae (potential
dispersers) and adult male moths (dispersers) to make inference on the effects of air currents and host-species abundance
on dispersal. Hierarchical-Bayesian and inverse modeling was used to explore 4 dispersal models: 1) isotropic dispersal;
2) directional-dispersal; 3) directional-and-host-species dispersal; and 4) host-species dispersal. Despite their strong
dependence on balsam fir Abies balsamea and spruce species Picea spp., the mapped basal area of these host species did not
influence the pattern of dispersed moths. The model that best fit the data was the directional-dispersal model, which
showed that the prevailing dispersal direction was from the northwest (328°). We infer that the strong pattern of
directional dispersal was due to a prevailing wind from the same direction. Our interpretation was corroborated by
independent wind data during the period of active adult male budworm flight, particularly in the region with high larval
abundance. Our results indicate that there was a relatively high probability of individuals flying at least 48 km with the
wind where larvae abundance at source locations was also high. Such findings emphasize the importance of long-distance
dispersal on spatial distribution of adult male spruce budworms. Insight into the population-level consequences of such

dispersal patterns requires additional research.

Insects and disease impact the largest area of U.S. forests
relative to other disturbance types, affecting an estimated
50 million acres with economic costs over $1.5 billion
(Dale et al. 2001). Economic impacts are exacerbated by
the regional synchronization of insect outbreaks, which
increases damage intensity (Candau et al. 1998, Cooke
and Lorenzetti 2006, Johnson et al. 2006) and over-
whelms agency and industry mitigation resources. Insect
dispersal can link independently oscillating populations,
synchronizing the dynamics of spatially disjunct popula-
tions (Kaitala and Ranta 1998, Williams and Liebhold
2000, Peltonen et al. 2002, Tobin and Bjornstad 2005).
While evidence supports the idea that regional synchrony
and other spatiotemporal outbreak patterns may be
caused by dispersal of insects from areas of high to low
abundance (Royama 1984, Williams and Liebhold 2000,
Johnson et al. 2004, Nealis and Régni¢re 2004a, Royama
et al. 2005), the role of dispersal in explaining these
patterns remains unclear due to the difficulty of
quantifying dispersal and its impacts on populations
(Royama 1984, Royama et al. 2005). A greater under-
standing of the processes underlying dispersal may
improve our ability to predict outbreak spread and focus
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effective intervention measures (Greenbank et al. 1980,
Sharov and Liebhold 1998, Johnson et al. 20006).

Increasing evidence suggests that dispersal varies spatially
and temporally as a function of landscape structure
(Keyghobadi et al. 1999, 2006, Cooke and Roland 2000,
Nathan et al. 2005), vegetation phenology (Gage et al.
1999), temperature (Sanders et al. 1978), and the direction
and speed of air currents (Greenbank et al. 1980, Onstad
et al. 2003). Several forest and agricultural pests have been
shown to use wind either actively or passively to enhance
their dispersal (Greenbank et al. 1980, Riley et al. 1991,
Westbrook and Isard 1999, Onstad et al. 2003).
In combination with air currents, it is likely that host-
species distribution may influence how dispersing forest-
insect pests move and settle (Roland 1993, Bergeron et al.
1995, Su et al. 1996, Cooke and Roland 2000).

The objective of this study was to use data on the
abundance and distribution of spruce budworm (SBW)
Choristoneura fumiferana larvae (potential dispersers) and
adult male moths (dispersers) to make inference on the
effects of air currents and host-species abundance
on dispersal. We wused a hierarchical Bayesian app-
roach to estimate a dispersal kernel from source locations



(Clark et al. 1999, Walder et al. 2009) using four alternative
dispersal models. First was an “isotropic-dispersal model”
that results in movement away from the source without
directional bias or the influence of host-species abundance.
Second was a “directional-dispersal model”, in which
movement away from the source was biased in one direction
(presumably due to wind) but not influenced by host-
species abundance. Third was a “directional-and-landscape-
dispersal model”, in which movement had a directional bias
and was influenced by host-species abundance. Lastly,
we examined a “landscape-dispersal model”, in which
movement was only contingent on the abundance of host
species. While we do not directly incorporate wind data
into our analyses, we infer that directional dispersal would
most likely be due to air currents.

Hierarchical Bayesian and inverse-modeling has been
applied to isotropic and, to a lesser extent, anisotropic
(directional) models of seed dispersal (Clark 1998, Clark
et al. 1999, Stoyan and Wagner 2001, Wagner et al. 2004,
Martinez and Gonzalez-Taboada 2009, Walder et al. 2009),
but has not previously been applied to insect dispersal.
While trees are distinct point sources of dispersing seeds and
fruits, it was not possible to empirically measure the larvae
abundance (point sources of dispersers) across the contin-
uous surface of our study area. Consequently, a key element
of our Bayesian hierarchical model was to generate larvae
abundance data by kriging data from larvae-collection
locations to obtain a continuous surface of larval abun-
dance, which represented the distribution of potential
dispersers. We then used the spatial pattern of moths
trapped at point locations to statistically estimate para-
meters for a dispersal kernel and landscape covariates (Clark
1998, Clark et al. 1999). We examined a Gaussian kernel
whose shape could be modified by decay and directional-
bias parameters, which allowed for anisotropic models
(Wagner et al. 2004, Walder et al. 2009). Consequently,
we were able to examine relatively simple field data and
make important inferences on dispersal patterns of spruce
budworm. Lastly, we analysed wind data during dispersal

(A) Larvae

periods to compare with modelled directional dispersal
patterns.

Methods
Study system

Spruce budworm is a native insect that periodically (~ 35 yr
cycle) defoliates balsam fir Abies balsamea and spruce species
Picea spp. in the boreal and sub-boreal forests of North
America. Females lay eggs on fir and spruce species but do
not appear to differentiate among different host species
(Nealis and Régniere 2004b). Eggs hatch in 10 d, and the
first-instar larvae disperse a short distance within the tree or
stand. The larvae form hibernacula, in which they molt into
second-instar larvae and enter into winter diapause. The
larvae emerge in early May and begin feeding on host tree
foliage. Pupation occurs in mid-June, and moths eclose in
approximately 10 d, completing the cycle. Local phenology
of SBW life stages is strongly related to temperature
(Régniere and You 1991). Moth dispersal occurs in the
evenings and is dependent on meteorological conditions
(Greenbank et al. 1980). While there may be subtle
differences in the timing of exodus between male and
female moths, both sexes emigrate together and have
identical exodus characteristics (Greenbank et al. 1980).
Females may emigrate after laying part of their egg
complement at the place of emergence. Moths can easily
disperse 20km and the maximum recorded dispersal
distance is 450 km (Greenbank et al. 1980). In addition,
evidence indicates that emigration rates increase with
increasing levels of defoliation (Royama 1984, Nealis and
Régniere 2004a).

The study area covers ca 69 000 km? and is centered on
the border lakes ecoregion between Ontario, Canada and
Minnesota, USA, hereafter referred to as Border Lakes
Landscape (BLL, Fig. 1). The central portion is a large
(1 million ha) unmanaged wilderness area comprised of the
Boundary Waters Canoe Area Wilderness, Voyageurs
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Figure 1. Maps of Border-Lakes Landscape study area along the Minnesota—Ontario border, indicating the collection locations and
relative abundances of larvae (A) and moths (B). The black circles represent the varying values of relative-larval abundance (0-2.5 larvae

per person-min) and moth counts (1-453).
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National Park, and the Quetico Provincial Park. Surround-
ing the wilderness areas are highly managed landscapes in

the US and Canada.

Larvae collection

We collected SBW larvae at 147 sites (Fig. 1A) over a two-
week period in June 2007. This period coincided primarily
with the largest (4th—6th instar) larvae stages. Site selection
was based on the presence of multiple trees of balsam
fir and white spruce. Larvae were collected by hand up to
2.3 m above ground or with pole pruners up to 4.5 m above
ground. Specimens were preserved in ethanol and
confirmed to species level in the laboratory. We recorded
the search time at each site. We generally searched until 20
larvae were obtained or until approximately 60 person-min
had elapsed. In our analyses, we used the number of larvae
collected divided by the person-minutes as a relative
measure of larvae abundance at each site.

Moth collection

At 120 of the larvae collection sites we placed 3 traps baited
with polyethylene caps containing eastern SBW pheromone
(E-11-Tetradecenal; Z-11-Tetradecenal; Scentry Biologi-
cals) and containing insecticidal vaportape (Dimethyl-2,
2-dichlorovinyl phosphate; Hercon Environmental) for
capturing male moths (Fig. 1B). We used a of combination
universal traps (UniTrap) and Multipher 1 traps (approxi-
mately equal numbers of each) that have similar moth
capture rates (Mullen et al. 1998). Hereafter, we use
“moths” to represent adult male moths. The moth
collection sites were generally no closer than 8 km in
proximity, but in a few cases they were separated by only
6 km. Traps were hung from branches of balsam fir or
white spruce ca 5-10 m apart prior to the flight period.
Moths were removed from traps outside the wilderness area
every 7-10 d during the main flight period (late June
through mid-July) and a final collection at the end of

Moth counts (M)

Landscape
Coefficients (B)

[Priors]

AN

Redistribution
kernel (K)

August. Within wilderness areas without road access,
samples were collected once during a two-week period
from early to mid-August. Final collection at all sites was
after the end of the flight period. In the laboratory, all SBW
individuals were identified and tallied under a 20 X
dissection microscope.

Landscape covariates

In our analyses we considered landscape covariates related
to forest structure and defoliation by SBW. We obtained
GIS data at 30-m resolution on the basal area for balsam fir
Abies balsamea, spruce species Picea spp., and deciduous
species (Wolter et al. 2009). Commission errors with non-
host conifers (e.g. Pinus spp.) were corrected by construct-
ing a non-host conifer mask, defined as locations where
nonhost conifers were present and host-species basal area
was <15% of the total basal area (P. T. Wolter, Univ. of
Wisconsin-Madison, pers. comm.). ArcMap (ESRI 2006)
was used to calculate the total basal area of these species
within a 500-m radius around moth collection sites. A GIS
map depicting areas defoliated by SBW based on
aerial surveys conducted in 2007 was obtained from the
U.S. Forest Service (<http://na.fs.fed.us/thp/ta/av/index.
shtm>; accessed March 2008).

Data modeling

We used Bayesian hierarchical modeling on spadially
referenced larvae- and moth-abundance data to make
inference on moth dispersal patterns in the BLL (Fig. 2).
Moth counts at each site were potentially influenced by
landscape covariates at thatsite, as well as the dispersal pattern
of moths (redistribution kernel). The redistribution kernel
could be influenced by decay and directional parameters,
and the relative number of potential dispersers (relative-
larval abundance). Inference was made by factoring the high
dimensional hierarchical model into lower dimensional

u v Relative-larval

abundance (L)

Figure 2. Directed graph of parameter dependencies used in the Bayesian hierarchical model.
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conditional probabilities that were easy to compute (Wikle
2003).

Relative-larval-abundance sub-model

The purpose of the relative-larval-abundance sub-model
was to krige larvae-collection data to create a continuous
surface of relative-larvae abundance across the study area.
Fourth to sixth instar larvae were considered potential
dispersers; therefore the relative-larval-abundance sub-
model occupies the lowest portion of the model hierarchy,
aside from priors on parameters (Fig. 2). We used Bayesian
kriging (Clark 2007, pp. 408—410) to extrapolate the
observed relative-larval abundance to points on a 8-km
grid system, hereafter referred to as grid-point prediction
sites. The relative-larval abundance observed (L) at site g
follows a multivariate normal distribution:
In(L) =aX +e¢;
g ~ N(O, Cg_’gJ)
Cog = 0'% exp(—((pdgyg,)S)
where X, was the matrix product of coefficients and
covariates, and Cg,g’ was the spatial covariance matrix
described by a variance (o) and a distance correlation
parameter (@), and the distance among larvae collection
sites (dgg). We added 0.004 to L, and performed a natural
log transformation to normalise the data. In this model the
only coefficients were for the intercept and a covariate
derived from aerial survey data on defoliation (see below).
Our GIS data on forest structure did not extend outside
the study area (Fig. 1), which created edge-effect problems
in our analysis. Consequently, the only covariate used in the
kriging was distance-weighted defoliation (defol,) of SBW at
larvae collection sites g. This covariate represents a relative
measure of proximity to all defoliated areas from larvae
collection points. The distance-weighted defoliation was
calculated by first placing random points 4 within the
defoliation polygons at a rate of 2.5 points km ~ 2. We then
calculated the distance between each larvae collection site
and each generated random point across all defoliation
polygons (d,,). Similarly, we calculated the distance
between grid-point prediction sites 7 and each generated
random point (d),;). The defol, variable was calculated as
follows:

defol, = ZM exp(—d, ;).

Similarly, the distance weighted defoliation at grid-point
prediction sites defol; was:

defol, =" exp(—d,,).

The predicted relative larval-abundance (Z;) at 8-km grid
points 7 followed a multivariate normal distribution (Clark
2007):

E(In(L) | L, 0,0, 9,9 = aX, + C/.C, J(In(L,) — X))

var(In(L)| L, %, 5,,¢.9) = G,y — CLC G,

o = Flexp(—(0d, 1)
C., =orexp(—(@ d;;))

1

where C; was the spatial covariance matrix among larvae
collection points (g) and prediction grid points (7), C;; was
the covariance matrix among prediction grid points, and
s was a smoothing parameter.

We used Markov chain Monte Carlo (IMCMC) to fit the
kriging-model parameters. The regression coefficients (o)
were sampled directly from the conditional posteriors using
vague priors (Normal(z|0,1000)). The spatial covariance
parameters (07, @) were sampled with a Metropolis-
Hastings rejection algorithm, using lognormal priors:
Normal(In(o;)|In(3),1) and Normal(In(@)|In(1),1). Para-
meter estimates and the associated uncertainty in estimates
of the relative-larval abundance were propagated into the
moth-dispersal sub-model.

Moth-dispersal sub-model

The predicted relative-larval abundance at the 8-km grid
points was used to derive a dispersal kernel that in turn was
used as a parameter of moth-dispersal model. We explored
various models that explained the number of moths
captured (M) at moth collection sites j as a function of a
dispersal kernel and landscape covariates (X)), such as basal

area of fir, spruce and deciduous trees:
ln(l\/[j) = ﬂX] + ln(l(j) +¢;
g~ N(0, )

where the variable K; was the estimated dispersal kernel
value (or, a relative measure) of moths arriving from all grid
point locations within 48 km of the moth-collection site,
and f represents the coefficients for the landscape covari-
ates. The X; were natural-log transformed to increase
efficiency of MCMC convergence on model parameters.
The errors were assumed to be independent and identically
distributed with variance %,. The dispersal kernel had the

following form:

D2 2
K = E e Dt:l,_]/ZL,, ,
7 i

where y was a decay parameter, Dist; j was the “effective
distance” between the source of moths at prediction-grid
point 7 and the moth collection site j. The variable Disz;;
was the Euclidian distance adjusted by parameters that
describe directionality, amplitude (or strength), and the
focus of directional dispersal. The variable Dis;; was
obtained by the product of the Euclidian distance (4;))
and a directional function, which is a generalisation of the
von Mises distribution (Batschelet 1981, Wagner et al.
2004):

Dist; = dl] X exp(kcos(&ij —u+wvX sin(éij — u)))

where 0 is the angle in radians between larvae source (7) and
the moth trap (), parameter 4 determines the amplitude,
u is the phase parameter (direction ranging from —7 to 7
and 0 is north), and parameter v determines the directional
focus of the directional dispersal kernel. We found that the
decay (y) and the amplitude (4) parameters were highly
correlated, which prevented convergence when attempting
to fit a directional dispersal kernel model. Both of these
parameters govern how far moths are likely to fly from the
source location. Consequently, when fitting a directional
kernel, we set y equal to 1, and let the decay be dictated by
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the % parameter. When fitting an isotropic kernel, the
directional parameters were not included and y was not
constrained to 1. The isotropic kernel depended on the
Euclidian distance and L;

—d*)2L,*
K=§ e a5/ 2
7 iy

We were constrained by the distance at which we could
allow larvae abundance to influence moth counts because
we did not have larvae abundance estimates in a large area
around the study area. For this reason we allowed moth
dispersal to influence moth counts at a maximum distance
of 48 km. Consequently, while we had 120 moth-collection
sites, we modelled moth counts at the 67 sites located in the
core of the study area.

In the moth-dispersal model, the regression coefficients
() and variance (63,) were sampled directly from the
conditional posteriors using prior distributions Normal
(B | 0,1000) and InverseGamma (03| 2,2) respectively.
The natural-log transformation normalised the moth
count data (M), which allowed us to efficienty sample
the conditional posteriors, as opposed to modelling these
data as a Poisson process, which has been done in seed-
dispersal studies (Clark et al. 1999, Stoyan and Wagner
2001, Martinez and Gonzalez-Taboada 2009). In isotropic
kernel models, y was sampled with a Metropolis-Hastings
rejection  algorithm, using lognormal priors:  Normal
(In(p) | In(1),1). For anisotropic kernels, the directional para-
meters were sampled with a Metropolis-Hastings rejection
algorithm with the following prior distributions: Normal
(£]0,10); Uniform(z | —mn,m); and Uniform(v |—1,2).
Within-chain serial autocorrelation was assessed to deter-
mine the appropriate thinning rate. Convergence on the
posterior target distribution was confirmed with a scale
reduction factor (R) <1.2 calculated on 4 parallel chains
(Gelman and Rubin 1992, Gelman et al. 2004). Con-
vergence was achieved with 200000 iterations, and
posterior summaries were taken from 4 chains containing
100000 samples with a thinning rate of 10 (i.e. 40000
samples). We used the Deviance Information Criterion
(DIC; Spiegelhalter et al. 2002) and R® to compare
competing models.

Evaluation of prevailing winds

Prevailing wind directions during periods of active adult
male budworm flight across the study area were quantified
as an independent validation of our modelling results.
Archived hourly wind and temperature observations
from the summer of 2007 were downloaded from both
Canadian and U.S. weather station sources distributed
across the study area. U.S. observations were obtained from
the Remote Automated Weather Station (RAWS) net-
work (16 stations; <www.fs.fed.us/raws/standards.shtml>).
Canadian observations were obtained from the Environ-
ment Canada National Climate Data and Information
Archive (4 stations; <http://climate.weatheroffice.gc.ca>).
We added 180° to each reported wind direction to
transform the data from source direction (i.e. where the
wind came from) to the direction of wind travel.

Both wind fields and SBW phenology (defining the
adult male flight period) were expected to vary significantly
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across the study area. We therefore defined “prevailing
winds” as the wind direction and velocity associated with
each larvae-sampling point during the estimated active
flight period for each respective point. We assigned
each larvae-sampling point to their nearest weather station.
We then extracted only those observations that met the
following biological criteria: 1) minimum flight tempera-
ture of 15°C; 2) minimum wind velocity of 0.7 ms 5
3) time of active flight (19:00-24:00 h local daylight time);
and 4) dates of active flight based on SBW phenology for a
given sampling point. Criteria 1-3 were derived from
Greenbank et al. (1980). Criteria 4 was estimated using the
SBW phenology model (Régniére 1982) as implemented in
BioSIM (v9.5.1; Régniére and Saint-Amant 2004). BioSIM
simulates emergence and life stages of SBW and other forest
insect pests using NOAA/NCDC weather station data
interpolated over a digital elevation model. The timing of
adule SBW emergence is influenced by temperature and
precipitation. We output three dates for each insect sample
point corresponding with 10% adult male emergence, peak
adult male emergence, and 90% adult male emergence.
Active flight dates for a given sample point was defined as
the range of dates between 10% adult male emergence and
90% male emergence for that point. This range always
contained the peak emergence date, and contained on
average a 20-d period.

Hourly observations meeting the above flight criteria
were grouped into 8 compass directions (north, northeast,
east .. .). Directionality in wind data were quantified in two
ways: frequency of observations and the potential passive
transport distance for the active flight period. The latter was
estimated by summing the wind velocities (km h ") within
each cardinal direction for a given sample poin, interpreted
as the distance (km) a particle would travel in a given
direction from the sample point if airborne for the entire
active flight period (dates and hours). Prevailing wind
variables were averaged across all sample points (n =137),
and also across a subset of sample points with larvae
abundances >0.75 larvae min ' of searcher effort (n =
19). This threshold in larvae abundance corresponded well
with the area of active defoliation in the southwestern part
of the study area.

Results
Relative-larval-abundance sub-model

Across all sites where larvae abundance was measured,
the lower-quartile, median, upper-quartile and maximum
values for the relative-larval abundance were 0.02, 0.07,
0.23 and 2.5 respectively. Results of the kriging model of
relative-larval abundance indicate an important effect of the
distance-weighted defoliation variable (Table 1). The
posterior distribution was positive and the 95% credible
interval did not overlap zero, therefore this variable was
retained. This result indicates, as expected, that defoliation
increased with increasing relative-larval abundance.
We used the posterior distributions of the covariance
parameters to plot a theoretical variogram including the
95% credible intervals (Fig. 3). The variogram suggests that
the spatial dependence in relative-larval abundance not
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Table 1. Results of kriging model of relative-larval abundance. Summary statistics are from posterior distributions.

Parameters Coefficient mean Coefficient SD Lower 95% Cl Upper 95% ClI
Intercept —2.33 0.67 —3.74 —1.03
Distance-weighted defoliation (defol) 0.24 0.07 0.11 0.38
Correlation (p) 0.77 0.48 0.15 2.00
Smoothing (s) 0.40 0.08 0.23 0.57
Variance 2.87 0.53 2.06 4.13

accounted for by the distance-weighted defoliation covariate
extends out to a distance of 50 km (the distance at which
the curve begins to level off).

Moth-dispersal sub-model

We explored 4 models of moth count data: isotropic
dispersal; directional dispersal only; directional dispersal
and landscape effects; and landscape effects only. The
isotropic model fit the data reasonably well with an R* of
0.28 (Table 2). Our analysis clearly shows that the
directional-dispersal-only model was the best as indicated
by R* and DIC values. The 95% credible intervals for
all landscape effects (individual basal areas of host and
deciduous species) overlapped with zero in both models
containing landscape variables, indicating a negligible effect
on moth counts. There was substantial variation in the basal
area of host species among sites, which should have resulted
in significant landscape effect if SBW were responding to
host species at the measured scale. For balsam fir, for
example, the minimum, median and maximum basal area
values within the 500-m radius buffer were 0.46, 31.93 and
127.00 m* ha™ "' respectively. In the directional-dispersal-
only model, the mean of the posterior distribution of the
k (amplitude) parameter was 1.70, which indicates a strong
directional effect (Table 3). The mean posterior value for the
u (directional) parameter was —0.55, which shows that the

5_
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Figure 3. Theoretical semivariogram generated with covariance
parameters showing the spatial dependence of the relative-larval
abundance not accounted for by the distance-weighted defoliation
covariate. Dashed lines are the 95% credible intervals.

prevailing dispersal direction was from the northwest (328°)
to the southeast (148°). We infer from this result that this
was the prevailing wind direction during the flight period.
Because of edge effects, we were only able to predict the
shape of the dispersal kernel up to 48 km from a particular
source location. The probability of a specific site receiving
moths flying with the prevailing wind from 48 km away
varied greatly as a function of the relative-larval abundance
at the source location (Fig. 4). The model predicts that
there was a probability of 0.65 that a source location with a
relative-larval abundance value of 1 would contribute moths
to a site 48 km downwind. With a relative-larval abundance
value of 0.01, very few moths would fly >10 km with the
prevailing wind. Because of the strong directional effect, the
probability of sites receiving moths flying against or
perpendicular to the wind was greatly reduced (Fig. 5).

Prevailing winds

We found anisotropy in wind direction when summarized
across all insect sample points during their respective
periods of active SBW flight, indicating positive bias in
wind direction of travel ranging between north and south-
east (Fig. 6A). Wind frequencies were highly correlated with
the potential distance of travel (p=0.99; only potential
distances are shown). Restricting the sample points to those
with high larvae abundance indicated a much stronger
directional bias toward the southeast (Fig. 6B). Greater
average potential distances in Fig. 6B also indicate stronger
wind velocities in the vicinity of the insect sample points
with high larvae abundance.

Discussion

Despite the crucial role of dispersal in metapopulation
models (Pulliam 1988, Kareiva 1990, Hanski et al. 1995), it
remains difficult to evaluate the relative importance of
abiotic and biotic factors influencing emigration rates and
long-distance dispersal because dispersal is difficult to
measure. For Lepidopteran forest defoliators, dispersal has
been indirectly inferred by examining egg to moth ratio,
(Royama 1984, Nealis and Régni¢re 2004a, Royama et al.
2005), but this approach gives no information on how far

Table 2. Comparison of moth dispersal models using R and DIC.

Model R? DIC
Directional dispersal only 0.46 219.1
Directional dispersal+balsam fir basal area 0.44 220.7
Isotropic dispersal 0.28 2385
Balsam fir basal area only —0.06 267.9
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Table 3. Summary statistics of the posterior parameter distributions for the directional-dispersal-only model.

Parameters Mean coefficient SD Lower 95% ClI Upper 95% ClI
Intercept 1.73 0.43 0.80 2.44
k (amplitude) 1.70 0.23 1.25 2.15
u (direction) —0.55 0.31 —1.14 0.01
v (focus) —0.09 0.54 —0.93 1.09
Variance 0.65 0.07 0.52 0.81

or where dispersers go. Mark—recapture studies provide
information on spatial patterns of dispersal, but studies of
long-distance dispersal (i.e. 10’s of km) of insects using this
technique are rare (Ockinger and Smith 2008). Micro-
satellite. DNA analyses are being used increasingly to
examine dispersal and gene flow (Pritchard et al. 2000,
Blanchong et al. 2002, Lucchini et al. 2002, Manel et al.
2002), and to relate genetic structure to landscape features
(Keyghobadi et al. 1999, Manel et al. 2003, Rueness et al.
2003, Wisely et al. 2004). The combination of hierarchical
Bayesian and inverse-model fitting in the present study
allowed us to use easily collected field data to make
inference on patterns of SBW dispersal without actually
identifying dispersing individuals. While inverse-model
fitting has been widely employed in modelling seed
dispersal (Clark 1998, Clark et al. 1999, Stoyan
and Wagner 2001, Wagner et al. 2004, Martinez and
Gonzalez-Taboada 2009, Walder et al. 2009), our study
was, to our knowledge, the first attempt with insects. This
empirical approach may therefore compliment more field or
laboratory-intensive methods to investigate long-distance
dispersal of mobile organisms.

The kriged grid of relative-larval abundance represented
the distribution of potential dispersers, which were used
with inverse modelling to identify the dispersal model that
best explained the spatial distribution of dispersed adult
moths. Our grid system had an 8-km resolution because
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Figure 4. Redistribution kernel of moths flying with the prevailing
wind from a single source location with relative-larval abundance
(RLA) levels of 0.01, 0.07, 0.23 and 1. The kernel values represent
a relative measure of moths arriving at the destination location.
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this was the primary distance that separated our larvae and
moth collection sites. For our kriging model, consequently,
we needed to quantify any potential covariates at that
resolution. This created edge-effect problems for quantify-
ing the total basal area of host species, because our GIS data
on host-species basal area did not extend outside of the
study area. As a result, we were not able to accurately
quantify the basal area of host species at the 8-km
resolution. We did find, however, that the amount of
SBW defoliation in the area (as measured by the distance-
weighted defoliation variable) was an important explanatory
variable of the relative-larval abundance. Model predictions
may have been better if we had the appropriate GIS data
(i.e. data outside the study area).

Model comparison showed that dispersal patterns were
best explained by a model that incorporates directional
dispersal, presumably due to wind effects, but was not
influenced by host-species abundance. Our modelling
allows for a single directional effect over the entire study
area and over the entire flight period. Examination of the
available wind darta indicated that wind directions varied
both spatially and temporally, which presumably appeared
as noise in our data as we made inference over the entire
flight period. Consequently, the strong dispersal pattern was
due ecither to a single or few days of strong winds in the
stated direction or that the prevailing wind was consistently
in that direction. The strong directional signal in the
dispersal kernel indicates that the bulk of the moths flew
from the northwest to the southeast. While our study was
limited to one dispersal season, the strong directio-
nal pattern clearly suggests that across years SBW dispersal
should be directional, but the direction and dispersal
distances will vary according to wind conditions.

Independent analyses of weather station data from across
the study area show evidence of a prevailing wind direction
during periods of active SBW flight (Fig. 6). It is impossible
to know the wind direction at the time of flight, but these
results support our conclusion that wind currents enhance
directional dispersal. Weather station data was most
consistent with our dispersal model when restricted to the
region with high larvae abundance, corresponding primarily
with a localized area of defoliation in the southwestern part
of the study area (Fig. 1A). The stronger corroboration
between the wind analysis and modelling results in the
high-density southwest area could be due to model results
being dominated by locations with high numbers dispersers
or by density-dependent dispersal behaviour. Nealis and
Régniere (2004b) demonstrated that female adult SBW
were most likely to emigrate in high density situations
where food resources were depleted via defoliation.
Our pheromone traps, however, only attract males, and it
remains unknown whether such density-dependent respon-
ses affect the emigration behaviour of adult male SBW.
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Figure 5. Two-dimensional redistribution kernel of moths flying from a single source location with relative-larval abundance levels of
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Our conclusion that SBW used air currents to facilitate
dispersal is consistent with previous findings on dispersal by
SBW and other vagile insect pests (Greenbank et al. 1980,
Riley et al. 1991, Westbrook and Isard 1999, Onstad et al.
2003). Given the results that SBW flying with the wind can
easily travel 48 km, and probably much further if we
extrapolate beyond our data, it is very likely that dispersal
is capable of synchronising independently oscillating popu-
lations (Kaitala and Ranta 1998, Williams and Liebhold
2000). An assumption underlying this conclusion is that our
dispersal model is valid for both male and female moths.
While females may disperse shorter distances than males,
they also use air currents and disperse directionally (Green
bank et al. 1980). A detailed population study demonstrated
that net immigration of egg-bearing females affects local
population dynamics (Nealis and Régniere 2004b). We,
therefore, adhere to the results-supported conclusion that
directional dispersal can facilitate synchrony.

Despite the strong dependence of SBW on balsam fir
and spruce species, our analysis did not detect an important
relationship between host-species basal area and moth-
dispersal patterns. This is counter intuitive because evidence
suggests that dispersing SBW deliberately descend onto host
trees (Greenbank et al. 1980). Further, SBW population
and defoliation dynamics are closely linked to the abun-
dance and quality of host species (Bergeron et al. 1995, Su
et al. 1996, Cappuccino et al. 1998, Cooke and Roland
2000, Zhang and Alfaro 2003). The lack of a relationship in
our analysis may be a result of the fine-grained distribution
of host species (small patches; James 2009) relative to

broad-scale long-distance dispersal. All of our moth capture
sites were situated in forest patches that contained one or
both of the primary host species. It remains unknown how
much host needs to be present to attract dispersing moths.
A few isolated trees may be sufficient if they lie in the
dispersing path. Our results show that the settling of
dispersing moths is not related to broad-scale abundance
of hosts (500-m buffer).

The approach presented here offers a flexible means to
use data easily collected in the field and compare various
forms of dispersal kernels in conjunction with landscape
covariates (Clark et al. 1999). The results demonstrate
compelling evidence for the directional redistribution of
adult SBW via long-distance dispersal, at least when
underlying populations are spatially heterogeneous as
observed in this study. Future research should focus on
the environmental and atmospheric processes underlying
long-distance dispersal of adults, and quantify the effect of
such movement on broad-scale population structure and,
ultimately, outbreak synchrony.
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