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Abstract We conducted an inverse modeling analysis,

using a variety of data streams (tower-based eddy covari-

ance measurements of net ecosystem exchange, NEE, of

CO2, chamber-based measurements of soil respiration, and

ancillary ecological measurements of leaf area index, lit-

terfall, and woody biomass increment) to estimate param-

eters and initial carbon (C) stocks of a simple forest

C-cycle model, DALEC, using Monte Carlo procedures.

Our study site is the spruce-dominated Howland Forest

AmeriFlux site, in central Maine, USA. Our analysis

focuses on: (1) full characterization of data uncertainties,

and treatment of these uncertainties in the parameter esti-

mation; (2) evaluation of how combinations of different

data streams influence posterior parameter distributions

and model uncertainties; and (3) comparison of model

performance (in terms of both predicted fluxes and pool

dynamics) during a 4-year calibration period (1997–2000)

and a 4-year validation period (‘‘forward run’’, 2001–

2004). We find that woody biomass increment, and, to a

lesser degree, soil respiration, measurements contribute to

marked reductions in uncertainties in parameter estimates

and model predictions as these provide orthogonal con-

straints to the tower NEE measurements. However, none of

the data are effective at constraining fine root or soil C pool

dynamics, suggesting that these should be targets for future

measurement efforts. A key finding is that adding addi-

tional constraints not only reduces uncertainties (i.e., nar-

rower confidence intervals) on model predictions, but at the

same time also results in improved model predictions by

greatly reducing bias associated with predictions during the

forward run.

Keywords Carbon cycle � Data-model fusion �
Eddy covariance � Howland Forest � Inverse modeling �
Parameter estimation � Uncertainty

Introduction

The manner in which eddy covariance measurements of

ecosystem–atmosphere exchanges of carbon (C), water and

energy are used by researchers has evolved since the first
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such measurements were made over natural ecosystems

beginning in the 1980s (see Baldocchi 2003 for a historical

overview). Early analyses used the measured CO2 fluxes to

investigate relationships between ecosystem processes and

abiotic drivers (Hollinger et al. 1994) and to construct

whole-ecosystem carbon budgets (Goulden et al. 1996).

Modelers quickly recognized the value of continuous flux

measurements (Aber et al. 1996), and these data have since

been used extensively for testing and evaluating predic-

tions of terrestrial ecosystem models (Amthor et al. 2001;

Kramer et al. 2002; Hanson et al. 2004). Posterior analyses,

e.g., probing data-model mismatches to understand when

and why models fail, have also been used to guide

model improvement (Ibrom et al. 2006; Sacks et al. 2006;

Williams et al. 2009).

A systematic and rigorously quantitative solution for

combining process models and observational data exists in

the form of model-data synthesis (Raupach et al. 2005;

Williams et al. 2009; Wang et al. 2009). In this context,

parameter estimation refers to procedures by which the

probability distributions of model parameters giving the

best agreement between measurements and model predic-

tions are estimated directly from (i.e., conditional on) the

data used as constraints. Over the last decade, progress has

been made in performing this ‘‘inverse modeling’’ using

eddy covariance flux data in conjunction with ecosystem

biogeochemical and biophysical models of various types.

Seminal efforts with a C-cycle emphasis include Wang et al.

(2001), Reichstein et al. (2003), Braswell et al. (2005),

Knorr and Kattge (2005), and Williams et al. (2005).

In inverse modeling, multiple data streams may be used

simultaneously as joint model constraints. Initially, most

analyses attempting this used only a limited combination of

measured carbon dioxide, latent heat, and sensible heat

fluxes to constrain ecosystem or SVAT models (e.g.,

Franks et al. 1999; Reichstein et al. 2003; Mo and Beven

2004; Wang et al. 2007; Sacks et al. 2006; Moore et al.

2008; Prihodko et al. 2008). However, the data used as

constraints may be of a variety of types, including not only

time series of measured fluxes but also ancillary informa-

tion about the size and turnover rates of biomass, litter, and

soil C pools, phenology and seasonal dynamics of leaf area

and fine roots, and so on (Barrett et al. 2005; Williams et al.

2005; Xu et al. 2006; Quaife et al. 2008; Medvigy et al.

2009; Fox et al. 2009).

An advantage of the multiple constraints approach is

that the different data streams may contain information

about different types of processes (Franks et al. 1999), or

about processes operating at different time scales (Raupach

et al. 2005; Barrett et al. 2005). For example, measured

CO2 fluxes contain considerable information about how

‘‘fast’’ processes respond to environmental drivers, but

much less information about ‘‘slow’’ processes operating

on decadal-to-century timescales. Thus other measure-

ments are needed to constrain parameters related to slow

processes (Braswell et al. 2005; Friend et al. 2007).

Major challenges to simultaneously incorporating dif-

ferent data streams as constraints in an inverse analysis are

balancing the diverse spatial and temporal scales of dif-

ferent data streams (Mo and Beven 2004), and character-

izing the error structures (‘‘uncertainty’’) in each data

stream (Raupach et al. 2005). These considerations force

decisions about the relative importance of different types of

data as model constraints (Sacks et al. 2006; Renzullo et al.

2008). For example, the number of observations can vary

by several orders of magnitude between continuous flux

measurements and periodic biomass or leaf area index

measurements. At the same time, tower measurements

integrate across a footprint several hundred meters in

length, whereas soil respiration chamber collars are typi-

cally no more than 0.3 m in diameter. And, while random

errors in tower fluxes are proportionally larger than those

for chamber measurements (Richardson et al. 2006a, b;

Savage et al. 2008), the representivity bias of an individual

chamber (or even a set of chambers) with respect to the

tower footprint as a whole is potentially large.

Furthermore, it is usually not possible to minimize the

data-model mismatch for all constraints simultaneously.

Rather, improving model agreement for one set of obser-

vations typically leads to a worse fit for one or more other

sets of observations. As a result, there is not a uniquely-

defined, unambiguously optimal parameter set. In fact,

what is meant by ‘‘optimal’’ in this context is somewhat

subjective (e.g., Gupta et al. 1999).

With respect to these challenges, the OptIC (Trudinger

et al. 2007) and REFLEX (Fox et al. 2009) experiments

demonstrated how choices about resolving these issues

influence the resulting parameter estimates and model

predictions. However, to date, there is little or no consensus

within the community on how this should best be done.

Here, we use a modified version of the DALEC model

(Williams et al. 2005), running at a twice-daily time step, in

an inverse analysis using long-term data from the Howland

Forest AmeriFlux site, a spruce-dominated forest in central

Maine, USA. We constrain the model parameterization

using a range of different data streams, including long-term

eddy covariance measurements of net ecosystem exchange

(NEE) of CO2, manual chamber measurements of soil res-

piration, and field measurements of leaf area index, annual

litterfall, and woody biomass increment. Our objectives are

threefold: (1) to examine how combinations of different

data streams influence the posterior distributions of

parameter estimates, and how these different parameter sets

propagate to uncertainty in model predictions; (2) to com-

pare model performance during a 4-year calibration period

(1997–2000) and a 4-year validation period (2001–2004)
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(Zobitz et al. 2008), during which no data were used to

constrain or otherwise influence the model parameters; and

(3) based on analysis of results from (1) and (2), to discover

which model components remain poorly constrained by the

data. From this, we identify the new measurements that

would most likely contribute to reducing model uncertain-

ties (e.g., sensu Barrett et al. 2005).

Materials and methods

Site description

The Howland Forest AmeriFlux site is located in central

Maine (45�12014.700N, 68�44025.000W, 60 m ASL; see

Hollinger et al. 1999, 2004) at the southern ecotone of

the North American boreal spruce-fir zone. The undis-

turbed stand (mean stand age & 110 years, maximum

stand age & 215 years; basal area 48 ± 17 m2 ha-1,

mean ± 1 SD, based on 48 FIA-style inventory plots) at

the ‘‘main tower’’ (1 of 4 flux towers currently in operation

at the site) is very atypical of contemporary Maine, par-

ticularly the surrounding landscape where intensive for-

estry activities have taken place for over a century. The

forest consists largely of red spruce (Picea rubens Sarg.)

and eastern hemlock (Tsuga canadensis (L.) Carr.), which

together account for over 70% of the tree biomass

(Hollinger et al. 1999). Topography is flat to gently rolling.

Soils range from well drained to very poorly drained over

relatively small areas (Levine et al. 1994).

Data and uncertainties

Inverse analyses cannot be properly conducted without

characterization of data uncertainties, which, through the

cost function used for parameter optimization, have a direct

influence on the posterior distribution of retrieved model

parameters (Richardson and Hollinger 2005). It has thus

been argued by Raupach et al. (2005) that ‘‘data uncer-

tainties are as important the data values themselves.’’ In

spite of this, relatively few studies have comprehensively

described the data uncertainties and incorporated this

information in the inverse analysis (but see Xu et al. 2006;

Williams et al. 2005 for notable exceptions). In the fol-

lowing two sub-sections, we describe the flux and ancillary

ecological data used as constraints, and the uncertainties

we ascribed to each of these.

Tower and chamber flux measurements and

uncertainties

Eddy covariance measurements of surface-atmosphere

exchanges of CO2, H2O and energy have been made at

Howland Forest since 1996. The flux systems consist of

model SAT-211/3K 3-axis sonic anemometers (Applied

Technologies, Longmont, CO, USA) and model LI-6262

fast response CO2/H2O infrared gas analyzer (LiCor, Lin-

coln, NE, USA), with data recorded at 5 Hz. The mea-

surement system and calculations are described in detail by

Hollinger et al. (1999, 2004). Data from nocturnal periods

are excluded when the friction velocity, u*, is less than a

threshold of 0.25 m s-1 (Hollinger et al. 2004). The sign

convention used is that carbon flux into the ecosystem is

defined as negative.

Here, we use only the CO2 flux time series from the

tower measurements. Because the data-model fusion was

undertaken with a model operating at a twice-a-day time-

step (day and night), data were required at the same reso-

lution. In generating these integrated data products,

missing 30-min flux measurements were gap-filled, where

possible, as follows. We defined ‘‘daytime’’ and ‘‘night-

time’’ using astronomical criteria (solar elevation greater or

less than 0�); thus, the length of day and night varied over

the course of the year. During the day, missing NEE values

were filled using a nonlinear light response curve, with

parameters fit separately each day. Missing nocturnal NEE

values were simply set equal to the arithmetic mean of

u*-filtered fluxes measured during the same night. This

approach differs from the ‘‘standard’’ Howland gap filling

procedure, which uses a light response curve with model

parameters fit at a monthly time step to fill missing daytime

measurements, and a second-order Fourier function fit to

the entire year’s data to fill missing nocturnal measure-

ments (Hollinger et al. 2004; Moffat et al. 2007). The

method used here does not necessarily yield a completely

gap-free time series of NEE. Rather, our objective was to

better account for time-varying changes in ecosystem

function (e.g., spring increases in photosynthetic capacity,

or late-summer limitation of photosynthesis by drought),

which might occur at a finer time scale than can be

resolved with the standard method.

The resulting time series was integrated to a twice-daily

time step, and integrated NEE (converted to g C m-2)

values were retained for subsequent analyses only if 75%

or more (cf. 50% in Sacks et al. 2006) of the half-hourly

periods in each half-day time step consisted of actual

measurements (i.e., had not required gap-filling). The

gap-filling and integration steps were embedded within a

Monte Carlo routine (n = 100 iterations), as described in

Richardson and Hollinger (2005, 2007), to estimate the

uncertainty in measured NEE and also to propagate this

uncertainty through to the gap-filled (and then integrated)

values. Random uncertainty was assigned after Richardson

et al. (2006a), assuming a double-exponential (Laplace)

error distribution with standard deviation (r) increasing as

a function of flux magnitude (based on reanalysis of
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Howland data: r = 1.0 ? 0.52 9 |F| for F C 0 and

r = 1.0 ? 0.28 9 |F| for F B 0, where F is the estimated

‘‘true’’ ecosystem flux, in lmol CO2 m-2 s-1).

Inspection of integrated fluxes indicated instances of

greater day-to-day variability, particularly in nocturnal

fluxes, than could be accounted for by either environmental

drivers or random measurement errors. Thus, as an addi-

tional source of uncertainty (likely representing, among

other factors, selective systematic biases due to time-

varying differences in the tower footprint), we calculated

the difference between integrated fluxes and the predicted

values for the same half-day period had gap filling been

conducted at a weekly, rather than daily, time step, and

treated this as a quasi-systematic bias. In this way, obser-

vations were weighted according to how consistent they are

with other measurements made at a similar point in time. A

variety of different models have been proposed for the best

way to combine random and systematic errors into a single

quantity (e.g., Petersen et al. 2001); as a conservative

approach, here we add the two quantities (random and

quasi-systematic uncertainties) linearly.

At two plots near the main Howland tower, soil respi-

ration measurements have been made manually during

daylight hours since 1996 using a measurement system

described by Savage and Davidson (2001). Typically, plots

(we used measurements from ‘‘T’’, or Tower, and ‘‘NC’’, or

Nutrient Cycling, plots) are visited once per week during

the growing season and once or twice per month during the

late autumn, winter, and early spring (Davidson et al.

2006). At each plot, eight permanent collars, 25 cm in

diameter and made from thin wall PVC tubing cut to 10-cm

lengths, were inserted into the ground to a depth of

approximately 5 cm. Estimated uncertainties for the

chamber measurements represent a combination of random

measurement error and sampling error. Based on analysis

of respiration model residuals (following Richardson and

Hollinger 2005; Richardson et al. 2008), the inferred ran-

dom error was found to increase with flux magnitude

(r = 0.03 ? 0.28 9 Fs, where Fs is the estimated ‘‘true’’

soil flux, in lmol CO2 m-2 s-1). Sampling uncertainties

due to spatial heterogeneity arise from the fact that a

limited number of collars, in a limited number of plots, are

measured (see discussion by Savage et al. 2008). We

estimated the sampling uncertainty as the standard error of

the mean flux across the n = 2 plots for each observation

period. Again, we adopted a conservative approach and

added random and sampling errors linearly. Measured

chamber fluxes and uncertainties were scaled up to the

half-day time step by multiplying each by the length of the

associated daytime period.

Cumulative frequency distributions of the estimated

uncertainties for tower and chamber fluxes are shown in

Fig. 1. For all fluxes, the median uncertainty was less than

1 g C m-2 per integration period. For daytime tower

fluxes, which had the largest uncertainties (and also the

largest measured fluxes), roughly 90% of the uncertainties

were below 2 g C m-2 per period.

Ancillary ecological measurements and uncertainties

Leaf area index (LAI, m2 m-2) was measured periodically

within the tower footprint using a LAI 2000 plant canopy

analyzer (Li-Cor). Sampling uncertainties were estimated

as the standard error of the mean LAI for each set of

measurements (between n = 18 and n = 24 plots), typi-

cally &0.1 m2 m-2. Systematic errors due to sensor cross-

calibration were estimated, based on results from a more

intensive LAI campaign at Howland (Richardson, unpub-

lished), to be &0.2 m2 m-2. Random errors, evaluated by

repeat measurements of the same transect, were sufficiently

small for individual measurements (1r = 0.15 m2 m-2)

that they could be ignored, given the number of plots

sampled, and the other (larger) sources of uncertainty.

Total uncertainty in stand-level LAI was thus estimated to

be 0.3 m2 m-2. LAI was converted to canopy mass based

on a mean (across dominant conifer species) foliage mass-

to-area ratio of 280 g dry foliage m-2.

Litterfall (foliage and fine twigs) was estimated by

periodic collection of the contents of baskets (6–10 baskets

per plot), with data aggregated to annual (autumn-to-

autumn) estimates. Sampling errors were calculated as the

standard error of the annual litterfall across the n = 2 plots,

and ranged from 10 to 30%.

The initial value of woody biomass carbon (Cw ¼
12:2� 0:7 kg C m�2; mean ± 1 SE), was estimated using

species-specific allometric equations (Young et al. 1980)
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Fig. 1 Cumulative frequency distributions of the estimated uncer-

tainties for tower fluxes and chamber fluxes. Uncertainties were

estimated for the integrated flux over a half-day time step (‘‘night’’

and ‘‘day’’), where the length of each integration period varied in

length according to time of year. Chamber measurements were only

made during daytime hours
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from DBH measurements of all trees C10 cm on n = 48

FIA-style inventory plots, located along radial transects at

distances of 50, 100, 200, and 400 m from the tower.

Cumulative biomass increment was estimated from tree ring

width measurements (Measu-Chron measuring bench; L.

Kutschenreiter Measuring Instruments, Vienna, Austria) on

increment cores extracted (in 2005) from all trees C10 cm on

a subset of n = 12 of the FIA plots; the uncertainty (calcu-

lated from the standard error of the mean plot-level cumu-

lative increment) was &10% for each year and was taken to

be a constant proportion of the cumulative increment.

Conversion from dry tissue mass to carbon content was

in all the above cases based on the assumption that dry

plant tissue is 50% carbon by mass.

Data from Fernandez et al. (1993) were used to con-

strain the initial value of total soil C content (CSOM =

11.0 ± 0.5 kg C m-2; mean ± 1 SE), with uncertainties

estimated based on the spatial variation (standard error of

the mean) among n = 24 quantitative soil pits

(0.71 9 0.71 cm), excavated to the C horizon (basal till) at

a depth of &0.8 m.

Meteorological driving data

Meteorological drivers required for the DALEC model

(incident solar radiation, air and soil temperature) are

measured concurrently with the fluxes on the main tower at

Howland; for details, see Hollinger et al. (2004). We make

the assumption that these point measurements are repre-

sentative of the tower footprint.

DALEC model

For this analysis, we used the evergreen version of the Data

Assimilation Linked Ecosystem Carbon (DALEC) model

originally developed and described by Williams et al. (2005)

and more recently used in the REFLEX experiment reported

by Fox et al. (2009). DALEC is a simple box model, running

at the daily time step, with C mass balance and five carbon

pools connected by fluxes as shown in Fig. 2. In DALEC, the

‘‘big-leaf’’ Aggregated Canopy Model (ACM) (Williams

et al. 1997) is used to calculate daily gross primary produc-

tion (GPP), as described in Fox et al. (2009). DALEC model

parameters, pools and fluxes are listed in Table 1; FOR-

TRAN code for DALEC and ACM, as well as additional

documentation of both models, is available online at

http://www.carbonfusion.org/Reflex.zip.

We made several modifications to DALEC, as follows:

(1) With the aim of better constraining the partitioning of

NEE to GPP and respiration, we ran the model at a

twice-daily time step, i.e. with separate ‘‘day’’ and

‘‘night’’ periods.

(2) The canopy at Howland begins to enter into dor-

mancy in autumn, coincident with the first frosts

(Hollinger et al. 1999), and remains essentially

dormant until early spring. This behavior could not

be captured by the original DALEC model, and thus

we developed a dormancy submodel (following

Hänninen and Kramer 2007) requiring one additional

parameter (Wc; see Table 1). The state of dormancy

(Sd) at time t is constrained to fall between 0 (full

dormancy) and Wc (full competency), and is defined

as:

SdðtÞ ¼ minðWc;maxðSdðt � 1Þ þ �TairðtÞ � LðtÞ; 0ÞÞ
ð1Þ

Here �TairðtÞ is the mean air temperature at time t, and

L(t) is the fractional day length of period t. Above-

freezing temperatures in spring raise Sd above 0, and

below-freezing temperatures in autumn reduce Sd

below Wc. At each time step, GPP predicted by ACM

is then scaled by Sd(t)/Wc.

(3) As described below, we optimized 12 DALEC

parameters (see Table 1). Here, as in the REFLEX

experiment (Fox et al. 2009), we treated nine of the

ten ACM parameters as fixed, optimizing only

nitrogen use efficiency. Modeled GPP appeared to

be insufficiently sensitive to temperature, and no

parameter set could be found for which modeled

daytime fluxes were consistent with (i.e., within

uncertainties) measured daytime NEE. An effective

solution was to scale modeled GPP linearly (over the

range from 0�C to s) as a function, j, of the maximum

daytime air temperature Tmax(t):

GPP Cr 

Cw 

Cf

Clit 

CSOM 

Ra

Af

Ar

Aw

Lf

Lr

Lw

Rh1

D

Rh2

Fig. 2 A schematic of the evergreen version of the DALEC model,

showing pools (boxes) and fluxes (arrows) of C. Feedback between

DALEC and the ACM (Aggregated Canopy Model) model for gross

primary production (GPP) is indicated by dotted line. A Allocation

fluxes, L litter-fall fluxes, R respiration, split between autotrophic (a) and

heterotrophic (h). D Decomposition, GPP gross primary productivity.

C stocks: Cf foliage, Cr fine roots, Cw wood, Clit litter, CSOM soil

organic matter. Allocation: Af to foliage, Ar to fine roots, Aw to wood.

Litterfall: Lf from foliage, Lr from fine roots, Lw from wood
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j ¼ minð1;maxð0; TmaxðtÞ=sÞÞ ð2Þ

We used a value of s = 40�C, which gave good

agreement between model and data. This linear scal-

ing also gave better agreement than nonlinear (e.g.,

parabolic or sigmoid) approaches.

(4) In the original DALEC model, both autotrophic

respiration and heterotrophic respiration are specified

as a function of air temperature. We instead specified

heterotrophic respiration from the soil organic matter

pool as a function of soil temperature at a depth of

10 cm.

(5) DALEC does not distinguish between below- and

above-ground autotrophic respiration, thus we intro-

duced an additional parameter (Fb, 0.2 B Fb B 0.8)

controlling the fraction of Ra partitioned belowground.

In that it has no effect on the aggregate fluxes, Fb is

not truly a model parameter, but it was needed so

that Rsoil (=Rh ? Fb 9 Ra) could be estimated and

Table 1 DALEC model parameters, pools and fluxes

Parameters (prior ranges given in parentheses)

P1 Td Log10 decomposition rate (per day) (-6, -2)

P2 Fg Fraction of GPP respired (0.2, 0.7)

P3 Fnf Fraction of NPP allocated to foliage (0.01, 0.5)

P4 Fnr Fraction of NPP remaining (after leaf allocation) allocated to fine roots (0.01, 0.5)

P5 Tf Log10 turnover rate of foliage (per day) (-4, -2)

P6 Tw Log10 turnover rate of wood (per day) (-6, -2)

P7 Tr Log10 turnover rate of fine roots (per day) (-3, -2)

P8 Tl Log10 mineralization rate of litter (per day) (-4, -1)

P9 Ts Log10 mineralization rate of SOM (per day) (-6, -2)

P10 Et Exponential temperature dependence of respiratory and decomposition processes (0.05, 0.2)

P11 Pn Photosynthetic nitrogen use efficiency for the ACM GPP model (2, 20)

P12 Wc Degree days for full recovery of competency following winter dormancy (0, 100)

P13 Fb Fraction of autotrophic respiration partitioned to belowground organs (0.2, 0.8)

Pools (g C m-2)

Cf Foliage (400, 1,200)

Cr Fine roots (25, 200)

Cw Wood (10,800, 13,600)

Clit Litter (25, 200)

CSOM Soil organic matter (includes coarse woody debris) (10,000, 12,000)

Fluxes

Production

G Gross primary production (GPP)

Respiration and decomposition

Ra Autotrophic respiration

Rh Heterotrophic respiration

D Decomposition

Allocation

Af Allocation to foliage

Ar Allocation to fine roots

Aw Allocation to wood

Litterfall

Lf Litterfall from foliage

Lr Litterfall from fine roots

Lw Litterfall from wood

Both parameters and initial pool sizes were optimized conditional on the data constraints

For decomposition and respiration processes, turnover rates at 0�C are one-half of the reported parameter value; corresponding rates at 10�C

depend on the exponential temperature dependence parameter, Et
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chamber-measured fluxes used as constraints. Opti-

mized values for Fb fell in the range of 0.20–0.38.

Data-model fusion approach

Although measurement errors in individual tower and

chamber measurements are thought to be non-Gaussian

(Richardson et al. 2006a, b; Savage et al. 2008), we assume

here (based on the central limit theorem) that the twice-

daily integrals are approximately normal, and thus that

weighted least-squares optimization is acceptable (see

Richardson et al. 2008).

For each data stream, yi, we calculated the total uncertainty-

weighted squared data-model mismatch ji, where pi is the

model predicted value and ri is the observation uncertainty:

ji ¼
XN

t¼1

yiðtÞ � piðtÞ
riðtÞ

� �2

ð3Þ

The multi-objective cost function, J, used for parameter

optimization is then defined as the product of the individual

ji’s, as in Eq. 4:

J ¼
Y

i

ji ð4Þ

When a particular data stream yi was not being included in

the optimization (see Table 2 for experiments conducted

with different data streams), we simply set the corresponding

ji to 1. In previous inverse analyses using multiple con-

straints, a range of different approaches have been imple-

mented; the way in which the cost function is specified will

affect the results of any inverse analysis. Commonly, the

individual ji’s are simply added together (sum of log-likeli-

hoods) (e.g., Trudinger et al. 2007), but this means that data

streams with more observations (e.g., flux time series) are

weighted more than those with fewer observations (e.g.,

periodic LAI or biomass measurements). Our method, by

taking the product of the ji’s, values relative, rather than

absolute, improvements in goodness-of-fit, and thus implic-

itly treats all data streams as equally important, as recom-

mended by Franks et al. (1999) and Barrett et al. (2005).

Mechanics of the optimization

Prior distributions for each parameter were assumed to be

uniform (noninformative, in a Bayesian context), and the

upper and lower limits between which the posterior distri-

butions were constrained to fall were set to the same values

used by Fox et al. (2009). These are listed in Table 1, and

used to set the y-axis ranges shown later in Fig. 5.

The parameter optimization routine was loosely based on

standard simulated annealing-type routines (coded in

FORTRAN) using the Metropolis algorithm (Metropolis

et al. 1953). It is similar to what we used previously for the

OptIC (Trudinger et al. 2007) and REFLEX (Fox et al. 2009)

experiments. Optimization takes place in three stages. First,

the parameter space is explored for 50,000 iterations, at which

point the parameter set (from these initial explorations) with

the lowest cost function is used as the starting point for the

Metropolizing. Second, the Metropolis algorithm is imple-

mented to ensure progressive down-slope movement while at

the same time avoiding local minima. 200,000 steps are taken

in this manner. Third, reverting to the best parameter set

obtained thus far, the parameter space is explored again until

1,000 parameter sets have been accepted, provided that each

of the ji’s (after variance normalization based on the mini-

mum ji obtained, e.g. Franks et al. 1999) passes a v2 test (at

90% confidence) for acceptance/rejection.

The resulting posterior distributions define the hyper-

volume in parameter space within which approximately

equally good matches to the data can be obtained. The joint

probability distribution of the model parameters, including

confidence intervals on individual parameters, can then be

characterized. In addition, by running the model forward

with the retrieved ensemble of parameter sets, confidence

intervals can be specified for the model output. Thus,

uncertainty estimates for model parameters, model states

(pool sizes), and model predictions are provided directly by

the parameter estimation algorithm, conditional on the data

and the cost function.

Results

Overall agreement between data and model

When all data streams were used together in the

multi-objective parameter optimization (cf. Table 2),

Table 2 Hierarchy of multi-constraint optimization experiments

using the DALEC model and 4 years of data (1997–2000) from the

Howland Forest

Run Data streams included in cost function and v2 test criteria

1 Daytime NEE fluxes only

2 Daytime and nighttime NEE fluxes

3 Run 2 plus ‘‘reality constraint’’ (neither Cw nor CSOM pool

collapses by more than 100 g C m-2 year-1 over 4-year

calibration period)

4 Run 3 plus soil respiration

5 Run 3 plus LAI

6 Run 3 plus litterfall

7 Run 3 plus cumulative woody biomass increment

8 All constraints simultaneously (i.e., Run 3 plus soil respiration,

LAI, litterfall and woody biomass increment)
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goodness-of-fit statistics (Table 3) indicated that, given our

uncertainty estimates, the model was generally able to

reproduce the data used for calibration (1997–2000). For

example, the uncertainty-weighted mean squared data-

model mismatch, ji/ni, which has an expected value of

unity when data uncertainty estimates are specified cor-

rectly and there is no model error (Kaminski et al. 2002),

was close to this value for all data streams except one: for

woody biomass increment, this statistic (j/n = 0.011)

indicated a considerably better fit to the data than would be

expected by chance (this also suggests that perhaps the cost

function specified is over-emphasizing a good fit to bio-

mass increment at the expense of a poorer fit to other data

streams). For daytime NEE (j/n = 1.225), data-model

mismatches were, on average, only about 10% larger

(1.1 9 1.1 & 1.2) than the estimated data uncertainties,

whereas for nighttime NEE (j = 0.723), data-model mis-

matches were about 15% smaller (0.85 9 0.85 & 0.72)

than the estimated data uncertainties. There was a tendency

for the optimized model to slightly under-estimate the

magnitude of both daytime net uptake and nighttime net

release of carbon, although the overall seasonal patterns of

NEE and soil respiration were replicated reasonably well

(correlation coefficient, r, in Table 3; see also the measured

and modeled time series shown in Fig. 3—persistent

under-estimation of soil respiration during the summer

months is obvious in most years).

Performance of the calibrated model during the valida-

tion period (2001–2004 data) was surprisingly good; for

both daytime and nighttime NEE, the various goodness-of-

fit metrics (Table 3) were essentially comparable to those

obtained during the calibration period. For leaf area index,

only two data points were available for the validation

period, but these were in good agreement with model

predictions (Fig. 4a). However, for both litterfall and

woody biomass increment, prediction errors were much

larger during the validation period. In the case of litterfall,

the model was not able to reproduce the year-to-year var-

iability, over-predicting litterfall in 2002 and 2004 and

under-predicting it in 2003 (Fig. 4b). This resulted in a

large increase in both j/n and mean absolute error (MAE),

although surprisingly little bias (Table 3). For woody

increment, the model predictions were strongly biased, and

in each year of the validation period, the model consis-

tently underestimated allocation to wood (Fig. 4c).

Although the modeled cumulative woody increment was

within 7 g C m-2 of the measured increment at the end of

the calibration period, the difference between measured

and modeled cumulative woody increment exceeded

100 g C m-2 at the end of the validation period.

The integrated annual NEE predicted by the model

constrained with all data streams was not well correlated

(during either the calibration or validation periods; both

P [ 0.50: similar results were obtained when the model

was calibrated using only daytime and nighttime NEE

measurements) with annual NEE estimated using an

empirical gap-filling method (Hollinger et al. 2004),

although in all cases the 95% confidence interval on model

predictions included the gap-filled value (Fig. 4). In addi-

tion, the amount of interannual variability in NEE pre-

dicted by the model (1 SD of the annual NEE integral, all

years, &25 g C) was only half as large as indicated by the

gap-filled measurements (&50 g C).

An advantage of using all data streams simultaneously

to constrain the model (as above) was that model predic-

tions during the validation period, 2001–2004, were greatly

improved, compared to when only NEE measurements

(i.e., Runs 1 and 2 in Table 2) were used. For example, the

mean gap-filled NEE during the validation period was

-200 g C m-2 year-1; when constrained with all data, the

predicted NEE (with the best-fitting parameters) was

-190 g C m-2 year-1 (90% confidence interval range:

-90 to -290 g C m-2 year-1). By comparison, when

constrained only with tower-measured fluxes the predicted

NEE was -75 g C m-2 year-1 (confidence interval: ?140

to -420 g C m-2 year-1), illustrating the potential for

Table 3 Summary statistics for measured and modeled carbon fluxes

and pools of DALEC model, for Howland Forest, Maine

Variable (units) n MAE Bias j/n r

Calibration (1997–2000)

NEE (night) (g m-2) 247 0.395 -0.242 0.723 0.679

NEE (day) (g m-2) 881 0.790 0.175 1.225 0.823

Rsoil (g m-2) 125 0.377 -0.191 0.713 0.887

LAI (m2 m-2) 8 0.209 -0.008 0.711 0.547

Cw (g m-2) 4 3.943 0.102 0.011 0.752

Lf (g m-2) 4 17.782 0.567 0.849 0.632

Validation (2001–2004)

NEE (night) 243 0.407 -0.112 0.736 0.696

NEE (day) 989 0.863 0.207 1.244 0.820

Rsoil 134 0.481 -0.178 0.622 0.796

LAI 2 0.188 0.006 0.393 –

Cw 5 59.446 -59.446 0.284 0.413

Lf 4 33.860 -2.176 2.210 0.080

Model calibrated using 1997–2000 data using a multiple constraints

approach (model predictions based on best-fit parameter set from Run

8 in Table 2), and then validated against 2001–2004 data

NEE Net ecosystem exchange of CO2, measured by eddy covariance,

Rsoil soil respiration, measured with a portable chamber system, LAI
leaf area index, Cw woody biomass increment, Lf litterfall, n sample

size, MAE mean absolute error, Bias mean error, j/n mean uncer-

tainty-weighted squared data-model mismatch (as used for optimi-

zation), r linear correlation between observations and model

predictions. For Cw, correlation coefficient calculated on annual Cw

increment, rather than cumulative Cw increment (which was used for

calibration)
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over-fitting even a comparatively simple model such as

DALEC. This agrees with observations of others (e.g.,

Braswell et al. 2005) that flux measurements alone contain

only limited information about certain aspects of forest C

cycling, particularly internal system dynamics related to

allocation and transfers among different C pools. A model

that is over-fit to the fluxes alone will perform poorly

(especially for those model states that were not constrained

at all) when run forward. Motivated by this, in the next two

sections, we evaluate how uncertainties in model parame-

ters and model predictions are reduced as different data

streams are used to constrain the model.

Parameter uncertainties

Of the 12 model parameters (noting that a 13th parameter,

Fb, mattered only when soil respiration data were used as

constraints, and did not affect overall model dynamics),

and 5 initial pool sizes (which we treated as parameters),

that we fit (Table 1), the degree to which posterior distri-

butions were constrained, and improved on the uniform

prior distributions, varied considerably depending on both

the data used to constrain the calibration (i.e., the different

runs in Table 2) and the parameter in question (Fig. 5). It

was common for posterior distributions to include both the

upper (5 or more of the 8 runs for 7 of 12 parameters) and

lower (5 or more of the 8 runs for P1–P9) prior limits.

However, parameters Tf (turnover rate of foliage), Tl

(mineralization rate of litter), Ts (mineralization rate of

SOM), Et (exponential temperature dependence), Pn

(photosynthetic nitrogen use efficiency), and Wc (degree

days for full recovery from winter dormancy) were notable

in that in all instances (including Run 1, when only daytime

NEE data were used to constrain the model), the posterior

interquartile range was markedly reduced (by an average of

57, 62, 84, 56, 33, and 41%, respectively) compared to the

prior interquartile range (=one-half the width of the prior

range, given uniform priors).

Using only tower fluxes (i.e., Runs 1–3 in Table 2),

posterior distributions of at least 8 of 12 parameter esti-

mates included both the prior upper and lower limits, and

for as many as 5 of the 12 parameters, the interquartile

range of the posterior distribution was not substantially

reduced compared to the prior interquartile (Fig. 5). Add-

ing additional constraints tended to reduce parameter

uncertainties, but the affected parameter depended strongly

on the data stream in question. For example, either soil

respiration (Run 4) or biomass increment (Run 7) data

were needed to constrain estimates of Fg (fraction of

GPP respired); litterfall (Run 6) data were required to
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Fig. 3 Time series of nighttime

(top panel) and daytime (middle
panel) net ecosystem exchange

(NEE) measured via eddy

covariance at the Howland

Forest, 1997–2004; bottom
panel shows time series of

chamber measurements of soil

respiration. Lines (with 90%

confidence intervals) indicate

DALEC model predictions

(dark gray calibration period,

light gray validation period);

filled circles indicate

measurements. The model

parameters were constrained

using a variety of different data

streams (Run 8 in Table 2). All

data scaled up to two time steps

daily, ‘‘day’’ and ‘‘night’’
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dramatically narrow estimates of Tf (turnover rate of foli-

age); and soil respiration (Run 4) data were necessary to

prevent long tails on the posterior distribution of Ts

(mineralization rate of SOM).

Overall, woody biomass increment (Run 7) appeared to

be the single data stream that in addition to tower-measured

NEE helped most to constrain model parameterization;

when these data were included, distributions of roughly

half the parameters still included the prior upper or lower

limits, but for all but two parameters (Td and Fnf, repre-

senting the decomposition rate and fraction of NPP allo-

cated to foliage, respectively) the posterior interquartile

range was reduced (by 60% on average) compared to the

prior interquartile.

Not surprisingly, the tightest parameter distributions

were obtained when all data streams were jointly used (Run

8). In some cases (e.g., for Fnf, fraction of NPP allocated to

foliage, and Tw, turnover rate of wood), well-constrained

posterior distributions required a multiple constraints

approach. More generally, when all data streams were

jointly used, posterior distributions of five parameters (Td,

Fnr, Tr, Pn, and Wc; see Table 1) included the prior upper

limit, but only two (Tr, Tl) included the prior lower limit. Tr

(turnover rate of fine roots) was the only parameter for

which the posterior interquartile range was not reduced

compared to the prior interquartile; for the remaining

parameters, the average reduction was close to 75%.

Finally, although ‘‘edge-hitting’’ (sensu Braswell et al.

2005) optimal parameter estimates were rarely observed in

any run, Tr was the sole parameter for which this occurred

when all data streams were jointly used.

In general, initial values of four (Cw, wood; CSOM, soil

organic matter; Cr, fine root; Clit, litter) of the five carbon

pools could not be well constrained with the data at hand

(Fig. 5; results not illustrated for Clit). For these pools,

posterior distributions tended to span the entire prior range,

with little or no reduction in the interquartile range. By

comparison, the fifth pool, Cf (foliage), was well con-

strained when either LAI (Run 5) or (surprisingly) biomass

increment (Run 7) data were used.

Prediction uncertainties

At the end of both calibration and validation periods

(Fig. 6), model predictions and associated uncertainties

varied depending on the data used to constrain the

parameterization. After the 4-year calibration period,

cumulative GPP (5,450 g C for Run 1, 5,200 g C for Run

2) and cumulative ecosystem respiration (4,450 g C for

Run 1, 4,550 g C for Run 2) were very similar between the

two runs calibrated only to tower-measured fluxes, when

best-fit parameter sets were used. Thus, given the model

structure, nighttime measurements were not strictly

required to constrain the partitioning of NEE to photo-

synthetic and respiratory components. Including the

nighttime data (Run 2) did, however, tend to result in

somewhat narrower confidence intervals on model predic-

tions compared to when only daytime NEE data were used

(Run 1). For both Runs 1 and 2, there was large uncertainty

about changes in the wood (DCw) and soil organic matter

(DCSOM) pools; typical behavior had a large increase in Cw
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Fig. 4 Time series. Modeled leaf area index, LAI; litterfall, Lf

(cumulative since last collection); annual woody biomass increment,

DCw; and annual cumulative net ecosystem exchange, (NEE) of

carbon, with uncertainties (90% confidence interval), for the Howland

Forest. Modeling was conducted with the DALEC model, constrained

(calibration period 1997–2000; validation period 2001–2004) with a

variety of different data streams (Run 8 in Table 2); actual

measurements are indicated by filled circles, with error bars
indicating estimated measurement uncertainties. For observed cumu-

lative NEE, the annual sum was estimated by gap-filling the 30-min

eddy covariance record using a standard empirical model
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being offset by large losses in CSOM (or vice versa).

These changes were in some instances so large as to be

biologically implausible (e.g., gains/losses exceeding

5,000 g C m-2 in these pools over the 4-year calibration

period). However, this behavior enabled better agreement

between model and data than was possible when additional

constraints were imposed. This again highlights the ease

with which even a minimally complex model can be over-

fit, and the importance of fully characterizing prediction

uncertainties in any data-model fusion exercise (Fox et al.

2009).

These results motivated Run 3, which included a

‘‘reality constraint’’ that simply kept Cw and CSOM from

changing at a rate[100 g C m-2 year-1; preventing either

one of these pools from collapsing simultaneously kept the

other pool from ballooning. However, while uncertainties

on DCw and DCSOM were greatly reduced compared

to Runs 1 and 2, other uncertainties were essentially

unchanged.

Several general observations can be made regarding the

effect of incorporating other data streams (Runs 4–8).

Best-fit integrated sums of NEE and GPP were little-

changed (relative to uncertainties) even when additional

data were used, although uncertainties were modestly

reduced when soil respiration (Run 4) or woody biomass

increment (Run 7) data were used as constraints. The

largest reduction in overall C balance uncertainty was

realized only when all data streams were used simulta-

neously (Run 8). Incorporation of leaf area index (Run 5)

and litterfall (Run 6) data greatly reduced the uncertainty

in the respective model predictions (e.g., see LAI uncer-

tainty in Fig. 6; similarly, litterfall uncertainty was

reduced by 90% when the model was constrained with

litterfall data) but these additional data streams did little to

decrease uncertainties in integrated NEE or GPP. The

converse of this is that in Run 3, when leaf area index and

litterfall data were not included, NEE and GPP uncer-

tainties were not dramatically increased despite large

uncertainties in modeled LAI and litterfall. A simple

explanation is that other, similarly unconstrained, model

components were able to compensate for the incorrect

representation of LAI and litterfall dynamics, yielding

predictions of NEE that were still consistent with the

tower-measured fluxes (i.e., being ‘‘right’’ for the wrong

reasons). With multiple data constraints, the likelihood of

this kind of behavior is reduced.
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Fig. 5 Posterior distributions of

parameters (listed in Table 1)

estimated for the DALEC model

using a variety of different data

constraints (Runs 1–8, x-axis;

see Table 2). All y-axes have

been scaled to indicate prior

ranges. Dots indicate ‘‘best fit’’

parameter set, based on cost

function minima; whiskers
indicate 90% confidence

interval, based on v2 test against

measured data; box indicates

interquartile range. Units for

initial pool sizes are kg C m-2

for Cw and CSOM (wood and soil

carbon, respectively), and

g C m-2 for Cf and Cr (foliage

and fine root biomass,

respectively)
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Uncertainties in integrated heterotrophic respiration (Rh)

and integrated soil respiration (Rsoil) were greatly reduced

(but still substantial) when soil respiration (Run 4) data

were used as constraints, especially compared to the base

cases using only tower NEE data (Runs 1–3). To a lesser

degree, woody biomass increment data (Run 7) also

reduced uncertainties in respiratory partitioning, because

by tightly constraining how much of the net primary pro-

ductivity is stored in wood (DCw uncertainties reduced by

*90% in Run 7 compared to Run 3; see Fig. 6), and with

only a small amount available for allocation elsewhere,

there is considerably less flexibility in how much carbon

can be allocated to other pools. An even better example of

this is the degree to which including woody biomass

increment dramatically reduced uncertainties on changes in

the soil organic matter pool (DCSOM uncertainties reduced

by *40% in Run 7 compared to Run 3; see Fig. 6) by

essentially eliminating compensating variation between Cw

and CSOM.

Thus, while ancillary data were valuable for constrain-

ing individual pools and fluxes, our results suggest that in

general such data may have very little impact on the overall

modeled C balance or estimates of productivity over the

observation period. However, incorporation of multiple

constraints greatly reduced the likelihood of overfitting the

model to any single data stream, thereby resulting in

improved representation of internal dynamics. And, criti-

cally, the use of multiple constraints improved predictions

and reduced uncertainties (lowering predictive bias and

reducing the width of confidence intervals) during the

validation period’s forward run.

Discussion

We have used a variety of different data streams to

constrain the parameters and initial states of the DALEC

model for a spruce-dominated forest in the eastern United

States. Our approach differs from that of Williams et al.

(2005), who, with a focus on state estimation, used data

assimilation techniques (nesting the ensemble Kalman

filter within a parameter optimization routine) to

sequentially introduce flux and stock measurements for a

young ponderosa pine stand in the western US into the

DALEC model. Sequential approaches (as described by

Raupach et al. 2005, and recently applied to similar

problems by Gove and Hollinger 2006, Chen et al. 2008,

Mo et al. 2008, Quaife et al. 2008) are attractive because

model states can be updated (or corrected) as new

observations become available. This could be important if

data were being streamed and the modeling was being

conducted in real time—as in numerical weather predic-

tion, for example. However, a consequence of this is that

recent observations have more influence than those in the

past, and observations that have not yet been assimilated

have no influence on the current prediction. By compar-

ison, ‘‘batch’’ methods, as implemented here, use all

observations simultaneously as constraints, and thus result

in maximizing the overall consistency between model and

the entire dataset (Raupach et al. 2005; Sacks et al. 2006).

Both sequential and batch approaches performed more or

less similarly in the REFLEX experiment (Fox et al.

2009), but there are significant differences in both phi-

losophy and implementation of each, and the most
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Fig. 6 Predictions of DALEC model, at end of calibration (1997–

2000, open circles) and validation (through 2004, closed circles)

periods, constrained with a variety of different data streams (Runs

1–8, x-axis; see Table 2) and run for the Howland Forest. For fluxes,

values shown are cumulative integrals (over 4 and 8 years for open
and closed circles, respectively) for net ecosystem exchange (iNEE),

gross primary productivity (iGPP), heterotrophic respiration (iRh),

autotrophic respiration (iRa) and soil respiration (iRsoil). Overall

changes in pool sizes are shown for woody biomass (DCw) and soil

organic matter (DCSOM). For LAI, the modeled leaf area index at the

end of each period is shown. Error bars indicate 90% confidence

intervals as determined by v2 test against measured data. Units
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36 Oecologia (2010) 164:25–40

123



appropriate method will depend on the research questions

being addressed.

A second difference is that, while Williams et al. (2005)

concluded that uncertainties were narrowed as additional

data streams were incorporated in the analysis, the contri-

bution of each data stream to this reduction was not

explicitly quantified. Here, we systematically conducted a

series of experiments to identify those data streams, in

addition to the tower-measured CO2 fluxes, were of most

value in this regard.

Third, and finally, Williams et al. (2005) used the Kal-

man filter for state (rather than parameter) estimation, and

as a tool for short-term extrapolation. In that study, the

optimized model was not explicitly tested in a multi-year

forward run. Here, as in Zobitz et al. (2008), we determined

the posterior distributions of 12 model parameters and 5

initial states using 4 years of measurements (1997–2000)

and then evaluated model predictions and associated

uncertainties in a forward run using an additional 4 years

of data (2001–2004).

Previous studies have reported limited success in esti-

mating model parameters using eddy flux data alone. For

example, Wang et al. (2001, 2007) and Knorr and Kattge

(2005) found that only *3–6 parameters could be well-

constrained. In our analysis, using just tower-measured

fluxes, posterior distributions were poorly constrained for

most model parameters and initial model states. However,

by adding additional data streams as constraints, estimates

of many (but not all) model parameters were tightened

considerably, and uncertainties on modeled fluxes were

often greatly reduced (Figs. 5 and 6). When all data streams

were used simultaneously as joint constraints, only one of

the DALEC’s 12 parameters (Tr, turnover rate of fine roots)

remained poorly constrained. Beyond the tower fluxes, our

analysis suggests that the most valuable data streams for

reducing uncertainties in net C sequestration were soil

respiration fluxes (Run 4) and woody biomass increment

(Run 7). While leaf area index (Run 5) and litterfall (Run 6)

contributed more specific information that reduced uncer-

tainties in the amount of foliage and the rate at which it

turns over (Tf), these data did not contribute to substantial

reductions in other model states or parameters. We expect

this minimal contribution of canopy structural data is rela-

ted to the relationship between LAI and GPP. Because GPP

is a major determinant of NEE, there is already information

on LAI contained in the NEE time series.

Even when all constraints were used simultaneously,

initial values of the wood, soil organic matter, fine roots,

and litter C pools (i.e., all C pools except for foliage) were

poorly constrained. This result should not be interpreted to

mean that the initial conditions do not influence model

predictions; rather, it likely suggests that compensation for

this influence is occurring through covariation with other

model states or parameters (‘‘equifinality’’; see Franks et al.

1997). It is also possible that the differences among the

scales of observation of the C pools introduce errors into

the inversion. In spite of large uncertainty associated with

initial conditions, the change in woody biomass increment

after the end of the full 8-year run was well constrained,

with an uncertainty of only ±30 g C m-2 at 90% confi-

dence (Fig. 6). For soil organic matter, substantial uncer-

tainties remained both in the initial pool size

(±960 g C m-2) and the change in the size of this pool

(±800 g C m-2) over the 8-year run.

While additional measurements to better constrain the

size of the soil C pool would be beneficial, sampling would

have to be sufficiently intensive to reduce uncertainties to

the point where new information was being contributed to

the model. By comparison, the large uncertainties in

both the initial size of the fine root pool and the fine root

turnover rate parameter (Tr) indicate that the existing data

provide inadequate constraints and suggest the need for new

measurements targeted directly at quantifying fine root

dynamics. This result also indicates that attempting to

include new pools in the model (e.g., a nonstructural car-

bohydrate storage pool, or differentiating litter and humus

pools) would not likely be of great benefit unless appro-

priate measurements were available to be used as con-

straints. Distinguishing between soil C pools that cycle on

time scales of days to years versus those that cycle on time

scales of centuries to millennia would probably reduce

uncertainties in the forward model simulations of SOM

pools, because most of the SOM does not exchange with the

atmosphere at shorter timescales. Radiocarbon measure-

ments could then be used to constrain prior estimates of the

turnover rates of these different pools (Trumbore 2000).

Even with all data streams as constraints, we were not

very successful at separating autotrophic from heterotro-

phic respiration (Fig. 6). Other inverse analyses have

reached the same conclusion (e.g., Wang et al. 2001; Knorr

and Kattge 2005; Zobitz et al. 2008; Medvigy et al. 2009).

A possible solution would be to leverage isotopic mea-

surements of 13C and 14C to improve estimates of this

partitioning, although there are substantial challenges to

implementing such techniques (Trumbore 2006).

Periodic manual measurements of soil respiration

resulted in greatly reduced uncertainties for above-/below-

ground partitioning of total ecosystem respiration (Fig. 6).

However, the persistent bias in modeled soil respiration

(particularly during summer months) indicates either

structural error in the model or perhaps that the locations of

the chamber measurement collars are not representative of

the broader tower footprint; in either case, there is a mis-

match between what is measured and what is modeled.

An obvious structural deficiency is that heterotrophic

respiration is insensitive to soil water content, and while
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extreme drought is rare at Howland, wetting/drying cycles

have been shown to be important for modulating soil res-

piration on synoptic time scales at this site (Savage et al.

2009). More generally, it is well known that most models

do not correctly model forest responses to drought (Hanson

et al. 2004; Friend et al. 2007; Siqueira et al. 2006). As

DALEC does not include either precipitation or soil water

as a driver of any processes, it is perhaps not surprising that

the interannual patterns in net C uptake could not be

reproduced, whether NEE fluxes alone, or all data streams

together, were used as constraints.

Increasing model complexity does not necessarily make

for a better model (Zobitz et al. 2008), as adding on

additional layers of detail may result in increased realism

but also greater equifinality, and poorer performance or

larger uncertainties in forward runs (e.g., Franks and Beven

1997). Shortening the time step at which the model runs

(from twice-daily to 30 min) might improve model per-

formance (Amthor et al. 2001), and would also (1) increase

the amount of eddy flux data that could be used and would

eliminate the need for gap-filling; (2) improve our ability to

characterize the sensitivity of fast processes to environ-

mental drivers, provided these relationships are described

in the model (e.g., asymmetric diurnal cycle of photosyn-

thesis driven by high vapor pressure deficit in the after-

noon); and (3) yield an opportunity to fully leverage the

information content of continuous autochamber measure-

ments of soil respiration that have been made at Howland

since 2005 (Savage et al. 2009). However, such an

approach could result in a greater emphasis on tracking

short-term variability, potentially leading to even poorer

model performance at slower timescales. This would occur

because data-model mismatches at seasonal-to-annual (and

slower) timescales are not explicitly included in the cost

function used here. Stoy et al. (2009) characterized the

spectral energy of ecosystem-atmosphere fluxes across a

range of time scales, and concluded that successfully

modeling the multi-annual patterns of these fluxes remains

an outstanding challenge (see also Richardson et al. 2007).

Williams et al. (2009) have proposed alternative cost

function specifications, based in the frequency domain,

which may offer promise in this regard.

Conclusions

Our analysis has emphasized the importance of fully

characterizing, quantifying and propagating uncertainty in

models (see also Pappenberger and Beven 2006). There is

increasing recognition that this is necessary in the context

of environmental decision-making and setting policy (Xu

et al. 2006; Ascough et al. 2008). By employing Monte

Carlo parameter estimation techniques, we have sampled

the posterior joint probability distributions of the DALEC

model’s 12 parameters, conditional on a range of data

streams, without making assumptions about the statistical

characteristics of parameter distributions (Knorr and

Kattge 2005).

A comprehensive analysis of model error remains an

outstanding challenge (Enting 2008). However, uncertainty

about (or incorrect specification of) model parameters is, in

itself, an important source of model uncertainty. In stan-

dard ‘‘bottom up’’ modeling approaches, this uncertainty is

rarely fully analyzed (Larocque et al. 2008). With an

inverse modeling approach, parameter estimation approa-

ches can be used to obtain an optimal match between data

and model, so that model structure, and not the model’s

parameter values, is the main source of model error. The

way in which uncertainty in model parameters and model

predictions is reduced as new data are added to inverse

analyses yields insights into the information content of

those data (Enting 2008). For example, measurements of

woody biomass increment are essentially orthogonal con-

straints that greatly reduce uncertainties beyond what could

be obtained with tower-based flux measurements alone.

However, with the exception of leaf area, none of the data

streams we used helped to reduce uncertainties related to

initial pool sizes. Chamber-based measurements of soil

respiration also provided valuable constraints, and as such

measurements are routinely made (at least periodically) at

many sites, these should increasingly be used in this type of

data-model fusion analysis. Perhaps most importantly,

however, our analysis has demonstrated that incorporating

multiple constraints in inverse analyses can also contribute

to improving model predictions by reducing predictive bias

and uncertainties during forward model runs.

Acknowledgments Research at the Howland Forest was supported

by the Office of Science (BER), US Department of Energy, through

the Terrestrial Carbon Program under Interagency Agreement No.

DE-AI02-07ER64355 and through the Northeastern Regional Center

of the National Institute for Climatic Change Research. The Howland

CO2 flux, climate, and ancillary ecological datasets are available at

http://public.ornl.gov/ameriflux/Data/index.cfm subject to AmeriFlux

‘‘Fair-use’’ policies.

References

Aber JD, Reich PB, Goulden ML (1996) Extrapolating leaf CO2

exchange to the canopy: a generalized model of forest photo-

synthesis compared with measurements by eddy correlation.

Oecologia 106:257–265

Amthor JS et al (2001) Boreal forest CO2 exchange and evapotrans-

piration predicted by nine ecosystem process models: intermodel

comparisons and relationships to field measurements. J Geophys

Res Atmos 106:33623–33648

Ascough JC, Maier HR, Ravalico JK, Strudley MW (2008) Future

research challenges for incorporation of uncertainty in

38 Oecologia (2010) 164:25–40

123

http://public.ornl.gov/ameriflux/Data/index.cfm


environmental and ecological decision-making. Ecol Model

219:383–399

Baldocchi DD (2003) Assessing the eddy covariance technique for

evaluating carbon dioxide exchange rates of ecosystems: past,

present and future. Glob Chang Biol 9:479–492

Barrett DJ et al (2005) Prospects for improving savanna biophysical

models by using multiple-constraints model-data assimilation

methods. Aust J Bot 53:689–714

Braswell BH, Sacks WJ, Linder E, Schimel DS (2005) Estimating

diurnal to annual ecosystem parameters by synthesis of a carbon

flux model with eddy covariance net ecosystem exchange

observations. Glob Chang Biol 11:335–355

Chen M, Liu S, Tieszen LL, Hollinger DY (2008) An improved state-

parameter analysis of ecosystem models using data assimilation.

Ecol Model 219:317–326

Davidson EA, Richardson AD, Savage KE, Hollinger DY (2006) A

distinct seasonal pattern of the ratio of soil respiration to total

ecosystem respiration in a spruce-dominated forest. Glob Chang

Biol 12:230–239

Enting IG (2008) Assessing the information content in environmental

modelling: a carbon cycle perspective. Entropy 10:556–575

Fernandez IJ, Rustad LE, Lawrence GB (1993) Estimating total soil

mass, nutrient content, and trace metals in soils under a low

elevation spruce-fir forest. Can J Soil Sci 73:317–328

Fox A et al (2009) The REFLEX project: comparing different

algorithms and implementations for the inversion of a terrestrial

ecosystem model against eddy covariance data. Agric For

Meteorol 149:1597–1615

Franks SW, Beven KJ (1997) Bayesian estimation of uncertainty in

land surface-atmosphere flux predictions. J Geophys Res Atmos

102:23991–23999

Franks SW, Beven KJ, Quinn PF, Wright IR (1997) On the sensitivity

of soil-vegetation-atmosphere transfer (SVAT) schemes: equif-

inality and the problem of robust calibration. Agric For Meteorol

86:63–75

Franks SW, Beven KJ, Gash JHC (1999) Multi-objective conditioning

of a simple SVAT model. Hydrol Earth Syst Sci 3:477–489

Friend AD et al (2007) FLUXNET and modelling the global carbon

cycle. Glob Chang Biol 13:610–633

Goulden ML, Munger JW, Fan SM, Daube BC, Wofsy SC (1996)

Exchange of carbon dioxide by a deciduous forest: response to

interannual climate variability. Science 271:1576–1578

Gove JH, Hollinger DY (2006) Application of a dual unscented

Kalman filter for simultaneous state and parameter estimation in

problems of surface-atmosphere exchange. J Geophys Res

Atmos 111:D08S07. doi:10.1029/2005JD006021

Gupta HV, Bastidas LA, Sorooshian S, Shuttleworth WJ, Yang ZL

(1999) Parameter estimation of a land surface scheme using

multicriteria methods. J Geophys Res Atmos 104:19491–

19503

Hänninen H, Kramer K (2007) A framework for modelling the annual

cycle of trees in boreal and temperate regions. Silva Fenn

41:167–205

Hanson PJ et al (2004) Oak forest carbon and water simulations:

model intercomparisons and evaluations against independent

data. Ecol Monogr 74:443–489

Hollinger DY, Kelliher FM, Byers JN, Hunt JE, McSeveny TM, Weir

PL (1994) Carbon dioxide exchange between an undisturbed old-

growth temperate forest and the atmosphere. Ecology 75:134–

150

Hollinger DY, Goltz SM, Davidson EA, Lee JT, Tu K, Valentine HT

(1999) Seasonal patterns and environmental control of carbon

dioxide and water vapour exchange in an ecotonal boreal forest.

Glob Chang Biol 5:891–902

Hollinger DY et al (2004) Spatial and temporal variability in forest-

atmosphere CO2 exchange. Glob Chang Biol 10:1689–1706

Ibrom A et al (2006) A comparative analysis of simulated and

observed photosynthetic CO2 uptake in two coniferous forest

canopies. Tree Physiol 26:845–864

Kaminski T, Knorr W, Rayner PJ, Heimann M (2002) Assimilating

atmospheric data into a terrestrial biosphere model: a case study

of the seasonal cycle. Glob Biogeochem Cycles 16:1066. doi:

1010.1029/2001GB001463

Knorr W, Kattge J (2005) Inversion of terrestrial ecosystem model

parameter values against eddy covariance measurements by

Monte Carlo sampling. Glob Chang Biol 11:1333–1351

Kramer K et al (2002) Evaluation of six process-based forest growth

models using eddy-covariance measurements of CO2 and H2O

fluxes at six forest sites in Europe. Glob Chang Biol 8:213–230

Larocque GR, Bhatti JS, Boutin R, Chertov O (2008) Uncertainty

analysis in carbon cycle models of forest ecosystems: research

needs and development of a theoretical framework to estimate

error propagation. Ecol Model 219:400–412

Levine ER, Knox RG, Lawrence WT (1994) Relationships between

soil properties and vegetation at the Northern Experimental

Forest, Howland, Maine. Remote Sens Environ 47:231–241

Medvigy D, Wofsy SC, Munger JW, Hollinger DY, Moorcroft PR

(2009) Mechanistic scaling of ecosystem function and dynamics

in space and time: Ecosystem Demography model version 2.

J Geophys Res 114:G01002. doi:10.1029/2008JG000812

Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E

(1953) Equations of state calculations by fast computing

machines. J Chem Phys 21:1087–1092

Mo XG, Beven K (2004) Multi-objective parameter conditioning of a

three-source wheat canopy model. Agric For Meteorol 122:39–63

Mo XG, Chen JM, Ju WM, Black TA (2008) Optimization of

ecosystem model parameters through assimilating eddy covari-

ance flux data with an ensemble Kalman filter. Ecol Model

217:157–173

Moffat AM et al (2007) Comprehensive comparison of gap-filling

techniques for eddy covariance net carbon fluxes. Agric For

Meteorol 147:209–232

Moore DJP, Hu J, Sacks WJ, Schimel DS, Monson RK (2008)

Estimating transpiration and the sensitivity of carbon uptake to

water availability in a subalpine forest using a simple ecosystem

process model informed by measured net CO2 and H2O fluxes.

Agric For Meteorol 148:1467–1477

Pappenberger F, Beven KJ (2006) Ignorance is bliss: or seven reasons

not to use uncertainty analysis. Water Resour Res 42:W05302.

doi:05310.01029/02005WR004820
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