
253

© The Ecological Society of America wwwwww..ffrroonnttiieerrssiinneeccoollooggyy..oorrgg

At its core, scientific knowledge is a collection of con-
ceptual models that attempt to describe how the nat-

ural world works and that have resisted repeated attempts
to find empirical data to contradict them. However, solu-
tions to broad-scale and complex environmental chal-
lenges often lie beyond the domain of traditional experi-
mental or empirical approaches. Ecological models
provide powerful tools to demonstrate or test the conse-
quences of assumptions and to conduct virtual experi-
ments to gain insight into complex ecological systems.

Ecological models (and by extension, any software tool
used in ecological research) are typically developed as
small, self-contained research projects. Beginning as rela-
tively simple programs, many ecological models grow as
funding opportunities arise, research needs evolve, and
personnel change. This approach meets immediate
research needs and produces quick (2–3 years) results.
Over the past decade, however, there has been an
increased demand for models capable of simulating multi-

ple interacting processes and making ecological forecasts
(Clark et al. 2001). Consequently, the scope and com-
plexity of ecological models have increased. Because of
the intellectual investment required to build complex
tools, their longevity and distribution have also
increased. Managing the long-term (> 5 years) growth of
models – while maximizing their reliability – is becoming
an important challenge. However, ecological models are
typically built by ecologists, not computer scientists.
Although many ecologists can write computer code, they
typically lack software engineering literacy (Wilson
2006). As a result, ecologists often build or modify mod-
els in an ad hoc manner, neglecting essential software-
building stages, such as testing and the documentation of
the underlying architecture (the underlying internal
design; Wilson 2006).

The adoption of rigorous approaches to building (or
“developing”) models also has the potential to substan-
tially increase scientific rigor and confidence in the
results. The scientific precision expected of models
should equal that expected for any ecological research
(Scholten and Udink ten Cate 1999). Furthermore,
when models are used in decision making, model devel-
opers must minimize logical errors and maximize the reli-
ability of the output.

Our objective is to introduce ecologists to state-of-the-
art software development approaches. Ecologists cannot
be expected to undertake the additional training neces-
sary to become proficient in computer science. Instead,
we hope that by highlighting some of the common short-
comings of model development, along with common
solutions, the scientific value of ecological models can be
improved. We also maintain that exposing ecologists to
established processes for developing robust software can
aid them as they manage complex software development
projects. Finally, we relate these concepts to our own

REVIEWS REVIEWS REVIEWS

Increasing the reliability of ecological
models using modern software engineering
techniques
RRoobbeerrtt MM SScchheelllleerr11**,, BBrriiaann RR SSttuurrtteevvaanntt22,, EErriicc JJ GGuussttaaffssoonn22,, BBrreennddaann CC WWaarrdd11,, aanndd DDaavviidd JJ MMllaaddeennooffff33

Modern software development techniques are largely unknown to ecologists. Typically, ecological models and
other software tools are developed for limited research purposes, and additional capabilities are added later,
usually in an ad hoc manner. Modern software engineering techniques can substantially increase scientific
rigor and confidence in ecological models and tools. These techniques have the potential to transform how
ecological software is conceived and developed, improve precision, reduce errors, and increase scientific cred-
ibility. We describe our re-engineering of the forest landscape model LANDIS (LANdscape DIsturbance and
Succession) to illustrate the advantages of using common software engineering practices.

Front Ecol Environ 2010; 8(5): 253–260, doi:10.1890/080141 (published online 20 Jul 2009)

IInn aa nnuuttsshheellll::
• Ecological models and other software tools are typically built in

an incremental, ad hoc manner, such that they can no longer
address new hypotheses, and must therefore frequently be
rebuilt

• Modern software engineering techniques can substantially
increase scientific rigor and confidence in ecological software

• LANDIS-II, a newer version of the LANDIS forest landscape
dynamics model, provides an illustration of an ecological
model re-engineered using modern software development tech-
niques

1Conservation Biology Institute, Corvallis, OR *(rmschell@pdx.edu);
2US Department of Agriculture Forest Service, Northern Research
Station, Rhinelander, WI; 3Department of Forest Ecology and
Management, University of Wisconsin, Madison, WI

Ecological models and software engineering techniques RM Scheller et al.

254

wwwwww..ffrroonnttiieerrssiinneeccoollooggyy..oorrgg © The Ecological Society of America

experience in re-engineering an ecological model.
Although system design and architecture are major

components of any project, we do not discuss either in
detail here. There exist parallel suites of software engi-
neering practices for designing system architecture. One
example is “Object Oriented Design”, which has been
successfully applied to ecological tools (Mladenoff et al.
1996; Sequeira et al. 1997; Lorek and Sonnenschein
1998). However, beyond a limited degree of complexity,
it is not necessary for most ecologists to become profi-
cient in designing software architecture – rather, ecolo-
gists should become proficient in the process of develop-
ing a model. Improving the process will ultimately lead to
more robust model architecture that can be readily
adapted to new questions and hypotheses.

� Common shortcomings of ecological model
implementation

We begin by distinguishing a conceptual model from the
computer program that implements it (henceforth, the
“implementation”). A conceptual model consists of the
science, including the formal logical and mathematical
relationships, state variables, input data, and the
sequence of calculations; it is typically peer-reviewed.
The implementation is a translation of the conceptual
model into code that a computer can read. There can be
multiple implementations (ie code translations) of a con-
ceptual model. Programming a model involves additional
issues and challenges, unrelated to the underlying sci-
ence. Approaches and methods for generating, verifying,
and validating a conceptual model have been previously
reviewed (Oreskes 1994; Aber et al. 2003; Gardner and
Urban 2003). Approaches to more robustly link concep-
tual models and their implementation have to date
received limited attention in ecology.

There are three principal shortcomings of model imple-
mentations: (1) failure to correctly or fully implement the
conceptual model, (2) the inability to maintain the
implementation through time, and (3) the inability to
adapt the implementation to allow new hypotheses and
questions to be addressed. Although failure to correctly
implement the conceptual model can be identified, ease
of maintenance or ability to readily expand the capability
of a model is more difficult to measure. These are related
to the management of complexity: how does one imple-
ment, maintain, and adapt a sufficiently complex ecolog-
ical model?

A number of factors contribute to inadequate model
implementations, including: (1) the complexity of the
conceptual model, (2) the scale and scope of the project,
(3) schedule and budget constraints, and (4) changing
requirements for the model implementation (Foote and
Yoder 2000). Many of these factors are beyond the con-
trol of the model developers. However, we believe the fol-
lowing general practices could readily improve the model
development process and aid scientists when managing

complex software development projects. These practices
will have the added benefit of removing the dependency
of a model on a single person or group, thereby increasing
model longevity and the potential for replicating the
methods.

� Generating requirements

Requirements are the criteria that a software system must
meet, and include implementation of the conceptual
model and the expected interface between the user and
the tool. Ideally, requirements are set before the begin-
ning of the development process and remain stable
throughout, but this is rarely the case in practice (Larman
2004). Requirements are particularly dynamic in a
research setting, where the answers to a set of questions
can lead to different directions of inquiry. These new
directions may regenerate requirements that differ con-
siderably from the original. For example, simple models
often evolve into larger, more complex models (Minar et
al. 1996). Even the most robust tool can erode over time
as a result of changing requirements (Foote and Yoder
2000).

Before a model is developed or substantially revised,
three sets of documents should be generated to clarify the
requirements: (1) a project charter, (2) a conceptual
model description, and (3) the expected model–user
interface description. The project charter should include
the reasons for developing the new model or tool, the
objectives and expectations of the software over the next
5–10 years, constraints under which the implementation
will take place, and the identities of the main stakehold-
ers (Lewis 1995; Panel 1). The conceptual model descrip-
tion is written for both ecologists and computer scientists,
and provides both the conceptual details of any require-
ments and a clear specification for implementing the
model as software. This is distinct from the scientific lit-
erature that documents the conceptual model and algo-
rithms, and should be geared toward enabling a program-
mer to generate the model implementation. Later, it can
serve as an introduction to the model for both ecologists
and programmers. Finally, the expected model–user inter-
face description should define the desired interaction
between the user and the particular tool, including the
graphical or command tools necessary for operating the
software.

� Iterative and incremental development

Iterative development (also known as “incremental” or
“iterative and incremental” development) is an approach
to building a software system through multiple iterations
(Larman 2004). Each iteration is a discrete mini-project,
consisting of requirement definition, design, coding, test-
ing, and assessment (Figure 1). Each iteration has discrete
tasks that can be objectively evaluated. Working code is
produced and documented at each iteration, with itera-

RM Scheller et al. Ecological models and software engineering techniques

255

© The Ecological Society of America wwwwww..ffrroonnttiieerrssiinneeccoollooggyy..oorrgg

tions taking about 2–8 weeks to complete (Larman
2004). During iteration assessment, the entire project
team reviews the tasks completed, assesses progress, iden-
tifies lessons learned, and defines the requirements for the
next iteration. During assessments, requirements can be
modified, allowing for flexible priorities and functional-
ity. Testing – described in detail below – should be
applied during every iteration. Testing and correcting a
model or tool are most efficient when done regularly,
because discovering problems early mitigates their impact
on subsequent code. In addition, testing core components
and isolating errors become increasingly difficult as addi-
tional complexity is layered onto the model.

Iterations can be grouped into four phases: conceptual
modeling, elaboration, model building, and model release
(Jacobson et al. 1999; Figure 2). During the conceptual
modeling phase, scientists and programmers focus on
gathering information about short- and long-term
requirements. Scientists envision how the model will be
used in 5 years, 10 years, and beyond (this vision is incor-
porated into the project charter). The elaboration phase
identifies, develops, and tests the most challenging com-

ponents of the underlying design. This phase is where
most of the software design occurs and should result in a
robust architecture that meets the defined requirements.
The model building or construction phase implements
the system and iteratively adds more complexity. Lastly,
the model release phase finalizes implementation and
testing of the complete system. Most of these activities
will occur during multiple phases and iterations.

Iterative development encourages regular, consistent,
and open communication among ecologists and program-
mers, thereby enabling frequent revision of model
requirements. Iterative development also encourages risk
taking and risk management: new ideas can be tested dur-
ing a single iteration, and failure is therefore limited in
scope while providing critical feedback. For example, if a
model contains a new scientific understanding or para-
digm, these features can be encapsulated within an early
iteration and defined, built, and tested before additional
complexity is added to the project. If the iteration fails (ie
the new scientific understanding cannot be represented
or the requisite architecture is not workable), the cost to
the larger project is minimized.

Panel 1. LANDIS-II project charter

Purpose
Our research objective is to produce a forest landscape simulation model, LANDIS-II, designed to study the effects of interacting nat-
ural (eg fire, wind, insects, deer) and anthropogenic (eg harvesting, climate change) disturbances on forest succession in large, hetero-
geneous landscapes.The model will produce predictions that can be tested empirically, in whole or in part. LANDIS-II will have the
capability to be parameterized for multiple ecosystems and conditions.

LANDIS-II will comprise three main ecological components: succession, seed dispersal, and disturbances.The succession component
will be designed to work with multiple disturbance components that modify the landscape, such as windthrow, harvest, insects, and fire.
Tree species will be represented in LANDIS-II as cohorts; each cohort is defined by species and age range (eg all sugar maples, Acer sac-
charum, 1–10 years old). In addition, LANDIS-II will allow additional information to be associated with each cohort.A succession rou-
tine that tracks biomass accumulation (aboveground net primary productivity–mortality) for each cohort has been designed and will be
available as an optional succession component. Each disturbance type will be a component that can be modified and replaced as neces-
sary. The model will allow new disturbance components to be added at will. Succession and seed dispersal components can be replaced
but are required. Finally, users will be able to select a time step that best fits the temporal scale of succession and disturbance within
their ecosystem. Each ecological process will have the capacity to operate at a unique time step.

Project objectives
LANDIS will be redesigned into LANDIS-II from the “bottom up”, resulting in an integrated but flexible landscape succession–distur-
bance model with flexible cohort information (species, age, and, initially, a biomass option) and a variable time step capability.The model
will consist of a controller component and multiple, separate components that can be added as needed. Each component will be
designed in the form of dynamic linked libraries.The model will require succession and seed dispersal components as a minimum and
these will be designed and implemented first. Inputs and outputs will also be designed as components that will be available for user
modification. LANDIS-II will be designed to accept additional disturbance components, so that other researchers will be able to create
their own components and add them to LANDIS-II to suit their particular research needs.This will allow expanded usage of LANDIS-
II, as other research facilities will be able to design custom disturbance components for their particular needs.

The redesign of LANDIS offers us the opportunity to (1) improve computational efficiency through improvements to the code, (2)
remove both known and unknown sources of model error, (3) enhance the re-usability of code through superior design, and (4) pro-
vide seamless and simplified integration between model components.

Physical scope

• Spatial extent: large landscapes ~104 to 108 ha. • Spatial resolution: 10 m x 10 m to 500 m x 500 m.

• Temporal extent: 50 to 2000 years. • Temporal resolution: 1 to 40 years.

• Number of species: unlimited. • Operating system: initially Windows OS.

• Programming language: C# , although the use of dynamic
linked libraries (dlls) allows individual components to use other languages.

Ecological models and software engineering techniques RM Scheller et al.

256

wwwwww..ffrroonnttiieerrssiinneeccoollooggyy..oorrgg © The Ecological Society of America

� Software testing

Software testing is required to ensure consistency
between the conceptual model and the implementation,
and is therefore essential for maintaining scientific rigor.
Unfortunately, software testing is typically undervalued
within scientific model building; often, formal testing is
neglected to save time, although ecologists may ulti-
mately expend much more time correcting poorly imple-
mented software.

Software testing includes unit testing, integration test-
ing, and system testing (Figure 3). Unit testing is the test-
ing of individual units (eg components, modules) of the
software system, as opposed to system testing. A unit test
is a pass–fail test for a function (a single component, such
as an algorithm) or an interface (an interaction among
components or between the user and the model). Unit
tests can be defined prior to implementing the associated
component. Indeed, generating unit tests prior to imple-
menting a component can help refine the component’s
requirements and expected behavior. For example, a sim-
ple unit test could pass a controlled input value to a com-
ponent containing a mathematical function, and verify
that the output value matches the expected value.

Another type of unit test would verify
proper behavior when an illogical or
out-of-range value is encountered.
Unit tests are designed to be automat-
ically repeated after any substantial
changes to coding.

Integration testing combines com-
ponents and tests their behavior and
performance as a group. Integration
tests typically occur after unit tests
have been completed, and should be
performed sequentially, from lower to
higher levels of organization, such as
testing a few components initially,
then testing many components later.
Integration testing focuses primarily on

the validity of the communication among components. For
example, an integration test could combine an input com-
ponent, a processing component, and an output compo-
nent, and use a controlled set of inputs to verify that the
correct outputs were produced. This ensures that data were
correctly shared among the three components, and that
each component correctly interpreted the data passed from
the other components.

System testing (also called “model verification”; Rykiel
1996) tests whether all the components are working
together correctly, as a cohesive package. System testing
evaluates the behavior of the entire system within the con-
text of the specified requirements, and can be performed
without knowledge of the underlying details of the imple-
mentation. System testing can also serve as a means of
evaluating the requirements specified for the system, and
can therefore provide a means of further refining require-
ments for later phases of development.

� Version control/configuration management

Version control is a system for tracking changes to source
code over time, saving source code at set times, and
resolving conflicts if multiple programmers are working
on the same project. A “snapshot” of an iteration can be
recorded before moving on to the next, allowing pro-
grammers to roll back development to a previous version
if the exploration of risky options during an iteration is
unsuccessful. Version control also enforces documenta-
tion of changes and facilitates co-development for geo-
graphically distributed teams. Free tools (eg Subversion,
www.subversion.tigris.org) and web sites (eg SourceForge,
www.sourceforge.net; Google Code, www.code.google.
com) are available to quickly deploy version control.

� Sustaining documentation

One of the greatest challenges for scientists developing
models with long life spans is the maintenance of docu-
mentation. Ecological models evolve and change as the
questions being asked change. Although a project charter

FFiigguurree 11.. Multiple development iterations consisting of writing requirement (r), design
(d), coding (c), testing (t), and assessment (a). This is the most simplistic formulation
of the software development life cycle.

FFiigguurree 22.. The four phases of software development using the
Unified Process. The actual number of iterations and the
number of iterations in any given phase will vary widely,
depending upon the project and personnel.

Conceptual model
development

Elaboration

Model building

Model release

r

d

c

t

a a

r

d

c

t

a

r

d

c

t

Iteration 1 Iteration 2 Iteration 3

Iteration
1 2 3 4 5 6 7 8 9 N

RM Scheller et al. Ecological models and software engineering techniques

257

© The Ecological Society of America wwwwww..ffrroonnttiieerrssiinneeccoollooggyy..oorrgg

may have been written and peer-
reviewed manuscripts published, doc-
umentation of the model implementa-
tion and components can quickly
become out of date. Peer review of
algorithms is unlikely, given the lim-
ited budgets for most projects. There
are no easy solutions, and we recom-
mend that developers: (1) maintain
documentation separate from the pub-
lished descriptions so that the docu-
mentation can be readily updated.
These can take the form of technical
reports or user guides available online.
(2) Use existing tools for documenting
code. Many programming environ-
ments provide tools that can assist
with the production of implementation-specific docu-
ments, such as descriptions of functions and relationship
diagrams of model components. (3) Practice “literate pro-
gramming” by writing code that maximizes readability (for
humans) and includes descriptions of algorithms and asso-
ciated full citations within the source code.

� Software development processes

Over the past two decades, many groups have defined
consistent suites of software development practices,
including project management, programming styles, and
tools to use (eg the Unified Modeling Language). These
are called “software development processes” (Table 1),
and each variant highlights different
features. For example, some processes
emphasize many short iterations,
team development (eg paired pro-
gramming, code review, common
project rooms), and minimal docu-
mentation (Larman 2004). Others
are architecture-centric and empha-
size tackling the riskiest or most
novel components of a project within
the first few iterations. The appropri-
ate software development process to
adopt is dependent upon the avail-
able resources, the size and scope of
the project, and the experience of the
team members. Each process is gener-
ally intended as a guideline, and each
project must identify which elements
to emphasize or discard.

� The LANDIS-II re-engineering
experience

LANDIS (LANdscape DIsturbance
and Succession) was originally con-
ceived to scale the insights provided

by forest gap succession models to landscapes to investi-
gate interactions between fire, wind, and forest dynamics
(Mladenoff 2004). The success of the LANDIS concep-
tual model is evident in its longevity and its use in differ-
ent research efforts over time (Mladenoff et al. 1996; He
and Mladenoff 1999; Gustafson et al. 2000; Sturtevant et
al. 2004; Scheller and Mladenoff 2005). However, while
the LANDIS conceptual model evolved as a research tool,
the program that implemented the model could no longer
support emerging requirements. As the number of repre-
sented processes expanded (eg Gustafson et al. 2000;
Scheller and Mladenoff 2004; Scheller and Mladenoff
2005; Sturtevant et al. 2004), requirements also changed
and expanded. Although the implementation matched

Table 1. Suggested process models, from most accessible (top row) to most
advanced (bottom row)

Reference or Uniform Resource
Process Description Locator (URL)

Software development The development process is Post and Anderson (2006)
life cycle broken into components,

including requirement,
design, coding, and testing.
In its most basic form,
these components progress
linearly (Figure 1).
Iterations are not used.

Unified process Emphasizes iterative develop- Jacobson et al. (1999);
ment, uses cases, development http://en.wikipedia.org/wiki/
of a robust architecture, and Unified_Process
risk assessment.

Agile Agile development uses very Post and Anderson (2006);
short iterations, frequent http://en.wikipedia.org/wiki/
communication, and minimal Agile_software_development
formal documentation.
Requirements can change often.

Capability maturity A general framework, including www.sei.cmu.edu/cmmi
model integration a structured set of relevant
(CMMI) best practices.

Model
Input

Expected

System testing

Integration
testing

Pass

Fail Unit tests

Component Component

FFiigguurree 33.. The three principal types of software testing: (1) unit tests define pass/fail tests
that are frequently applied; (2) integration testing assesses communication among com-
ponents; and (3) system testing compares actual to expected outcomes.

Ecological models and software engineering techniques RM Scheller et al.

258

wwwwww..ffrroonnttiieerrssiinneeccoollooggyy..oorrgg © The Ecological Society of America

the conceptual model (ie the model behaved correctly),
we could no longer adapt the model to meet our research
needs (eg adding biomass accumulation, soil carbon, and
nitrogen; Figure 4). We concluded that a complete re-
engineering of the LANDIS program was required to
meet these needs (Scheller et al. 2007).

Our first step was to formalize a vision for the next gen-
eration LANDIS model within a project charter (Panel
1). Key requirements identified included: (1) building
upon the scientific assumptions of the original model, (2)
performance optimization for large landscapes (ie mil-
lions of spatially interactive cells), (3) ability to accom-
modate multi-scale processes through process-specific
time steps and variable cell resolution, and (4) enhanced
opportunity for scientific collaboration through a flexible
and extensible model architecture that would allow new
ecological processes (implemented as extensions) to be
added or removed, without altering the core model
(Scheller et al. 2007).

Building upon the science of the original LANDIS
model required a clear description of its underlying con-
ceptual model. Like many ecological models, the concep-
tual model was not adequately described in a distinct doc-
ument and existing published manuscripts did not
contain sufficient information to re-implement the
model. We therefore documented the conceptual model
within a model description document, adding in new

requirements defined within the LANDIS-II charter
(Scheller et al. 2007).

Next, we adopted the Unified Process (UP) of soft-
ware development (Jacobson et al. 1999). Distinguish-
ing aspects of UP are that it is iterative and incremental,
and it emphasizes risk mitigation. Important risks are
addressed early in the development cycle (Jacobson et
al. 1999). Model development required 13 iterations
(Table 2). Because we addressed the riskiest component
first – the extensible architecture – we quickly discov-
ered advantages to using the C# programming language
and switched away from C++, potentially saving consid-
erable time. In addition, the iterations greatly facilitated
the management of such a complex model. Com-
munication among team members was frequent and we
were able to follow an “adaptive management” approach,
learning and documenting which development and
design approaches were working and which needed to be
changed or discarded. The testing that occurred at each
iteration gave us confidence that the model was robust,
and many problems were identified and fixed throughout
the process. In general, of all the practices we used, iter-
ations had the most immediate and tangible benefits.

Our testing initially verified that the core model cor-
rectly recognized and loaded the various extensions and
correctly managed the variable time steps. Later, hun-
dreds of simple pass/fail unit tests were written to ensure

FFiigguurree 44.. The evolution of the LANDIS conceptual model through time.

Original LANDIS model
All components

10-year time step

LANDIS-II
Each component
unique time step

Seeding

Cohort biomass

Soil carbon and nitrogen

Seeding

Spatially interactive
landscape Spatially interactive

landscape

Fire

Wind

Fire

Wind

Insects

Harvest

LANDIS model evolution

Added processes, requirements, and complexity

RM Scheller et al. Ecological models and software engineering techniques

that the model accurately identified
user input errors. After the initial
suite of extensions was written, we
applied integration testing to indi-
vidual extensions to compare out-
comes with and without other exten-
sions. Later, we performed system
testing to ensure that model behav-
ior matched that of the conceptual
model. Our system tests used highly
simplified and small landscapes that
would allow us to quickly evaluate
model behavior; only at the end of
the development process was system
testing applied to large, complex
landscapes. We have since devel-
oped several additional extensions
that have also been tested using unit
tests, integration tests, and system
tests, on both simple and complex landscapes.

Finally, the LANDIS-II development process was con-
siderably enhanced and augmented through open-
source, online tools. We created a web site (www.landis-
ii.org) containing detailed iteration plans and reviews,
enabling our geographically distributed science team to
track progress and coordinate efforts. Version tracking
software (a Subversion code repository with Tortoise-
SVN client software) accessed through the internet
allowed teams of programmers to coordinate and share
code in real time.

� Recommendations for getting started

We recommend easing into these software development
practices. Ecologists should learn how to write require-
ments, plan iterations, and use version control before
choosing a particular process (Wilson 2006; Table 1).
When implementing best practices, focus first on those
that fit your needs and budget. Deploy additional con-
cepts and processes incrementally, as you learn what
works and what does not. If you choose to adopt a
defined process, it is not necessary to follow the defined
approach exactly. Instead, remain adaptive and use those
elements that are attainable and valuable. We advocate
using all the model testing approaches available – writ-
ing unit tests, testing components after every iteration,
integration testing, and system testing. We recommend
that iterative and incremental development should
always be employed. If the tool being developed is a
model, we recommend exploring some of the many exist-
ing frameworks for model implementation (eg Simile
[Muetzelfeldt and Massheder 2003], Stella [Costanza and
Voinov 2001], SELES [Fall and Fall 2001]), although the
approaches outlined should still be deployed even when
working within an existing framework. Finally, we rec-
ommend further research on software design and archi-
tecture, recognizing that it may eventually be necessary

259

© The Ecological Society of America wwwwww..ffrroonnttiieerrssiinneeccoollooggyy..oorrgg

to consult with or employ computer scientists.

� Conclusions

Software fails when the implemented code is not consis-
tent with the conceptual model or the relationship
between the conceptual model and the code can no
longer be ascertained. Failure is not uncommon in soft-
ware development, and we should expect that such fail-
ures occur routinely during the development of ecological
tools. Because of the need for scientific rigor and the high
potential for failure, developers of ecological tools have a
strong motivation for adopting standardized processes
and best practices.

Complex ecological models represent a substantial
investment in time and money. Some of the more sophisti-
cated and general models may be used for a decade or more,
to address a variety of questions, and often by a user com-
munity that did not develop the model. Early investment
of time and resources in the underlying vision and archi-
tectural design of a model not only provides the flexibility
to adapt to new questions, but also saves many more times
that investment in software maintenance and user support.

A key challenge for the future of ecological modeling is
the management of complexity. The methods and
processes described here, adopted from software engineer-
ing, are proven techniques that will enable ecologists to
develop the next generation of models with the same
rigor and reliability expected of our statistics and experi-
mental designs. If we allow system and model complexity
to overwhelm us, the potential contribution and promise
of ecological models will be lost.

� Acknowledgements

B Cummings first introduced us to software develop-
ment processes and challenged us to adopt software
engineering techniques. J Domingo implemented the

Table 2. Major iterations used in the development of LANDIS-II (version 5.0)

Iteration phase type Number Description

Conceptual modeling 1 Defining the LANDIS-II charter
Conceptual modeling 2 Defining LANDIS-II features and requirements
Conceptual modeling 3 Assessing project risks
Elaboration 4 Landscape module: site variables and iterators
Elaboration 5 C++ and Plug-n-Play (dynamic linked libraries)
Elaboration 6 Investigating C#
Elaboration 7 Rounding out the core
Model building 8 Wind disturbance extension and species data manager
Model building 9 Age-only succession, continue work on species data
Model building 10 Ecoregions and reproduction
Model building 11 Alpha 1 release
Model building 12 Performance testing
Model building 13 Performance tuning
Model release 14 Beta 1 release
Model release 15 Release candidate 1
Model release 16 Official release

Ecological models and software engineering techniques RM Scheller et al.

core LANDIS-II architecture. J Fisk, T Spies, M Moran,
and others provided critical feedback on the manu-
script. Some key concepts underlying the LANDIS-II
architecture, including modularity and the use of dlls,
were elucidated through a series of LANDIS develop-
ment workshops. In addition to the authors, key con-
tributors to the workshops included H He, W Li, ZB
Shang, J Yang, D Lytle, and S Shifley. Funding for LAN-
DIS-II was provided by the US Department of
Agriculture Forest Service, Northern Research Station,
and the National Fire Plan.

� References
Aber JD, Bernhardt ES, Dijkstra FA, et al. 2003. Standards of prac-

tice for review and publication of models: summary of discus-
sion. In: Canham CD, Cole JJ, and Lauenroth WK (Eds).
Models in ecosystem science. Princeton, NJ: Princeton
University Press.

Clark JS, Carpenter SR, Barber M, et al. 2001. Ecological forecasts:
an emerging imperative. Science 229933: 657–60.

Costanza R and Voinov A. 2001. Modeling ecological and eco-
nomic systems with STELLA: part III. Ecol Model 114433: 1–7.

Fall A and Fall J. 2001. A domain-specific language for models of
landscape dynamics. Ecol Model 113377: 1–21.

Foote B and Yoder J. 2000. Big ball of mud. In: Harrison N, Foote
B, and Rohnert H (Eds). Pattern languages of program design
4. Reading, MA: Addison-Wesley.

Gardner RH and Urban DL. 2003. Model validation and testing:
past lessons, present concerns, future prospects. In: Canham
CD, Cole JJ, and Lauenroth WK (Eds). Models in ecosystem
science. Princeton, NJ: Princeton University Press.

Gustafson EJ, Shifley SR, Mladenoff DJ, et al. 2000. Spatial simula-
tion of forest succession and timber harvesting using LANDIS.
Can J Forest Res 3300: 32–43.

He HS and Mladenoff DJ. 1999. Spatially explicit and stochastic
simulation of forest landscape fire disturbance and succession.
Ecology 8800: 81–99.

Jacobson I, Booch G, and Rumbaugh J. 1999. The unified software
development process. Boston, MA: Addison-Wesley
Professional.

Larman C. 2004. Agile and iterative development: a manager’s
guide. Boston, MA: Pearson Education Inc.

Lewis JP. 1995. Fundamentals of project management. New York,
NY: American Management Association.

Lorek H and Sonnenschein M. 1999. Object-oriented support for
modelling and simulation of individual-oriented ecological
models. Ecol Model 110088: 77–96.

Minar N, Burkhart R, Langton C, and Askenazi M. 1996. The
swarm simulation system: a toolkit for building multi-agent
simulations. Santa Fe, NM: Santa Fe Institute. Working Paper
96-06-042.

Mladenoff DJ, Host GE, Boeder J, and Crow TR. 1996. LANDIS: a
spatial model of forest landscape disturbance, succession, and
management. In: Goodchild MF, Steyaert LT, Parks BO, et al.
(Eds). GIS and environmental modeling: progress and research
issues. Fort Collins, CO: GIS World Books.

Mladenoff DJ. 2004. LANDIS and forest landscape models. Ecol
Model 118800: 7–19.

Muetzelfeldt R and Massheder J. 2003. The simile visual modelling
environment. Eur J Agron 1188: 345–58.

Oreskes N, Shrader-Frechette K, and Belitz K. 1994. Verification,
validation, and confirmation of numerical models in the earth-
sciences. Science 226633: 641–46.

Post G and Anderson D. 2006. Management information systems:
solving business problems with information technology, 4th
edn. New York, NY: McGraw-Hill Irwin.

Rykiel Jr EJ. 1996. Testing ecological models: the meaning of vali-
dation. Ecol Model 9900: 229–44.

Scheller RM, Domingo JB, Sturtevant BR, et al. 2007. Design,
development, and application of LANDIS-II, a spatial land-
scape simulation model with flexible spatial and temporal reso-
lution. Ecol Model 220011: 409–19.

Scheller RM and Mladenoff DJ. 2004. A forest growth and biomass
module for a landscape simulation model, LANDIS: design,
validation, and application. Ecol Model 118800: 211–29.

Scheller RM and Mladenoff DJ. 2005. A spatially interactive simu-
lation of climate change, harvesting, wind, and tree species
migration and projected changes to forest composition and bio-
mass in northern Wisconsin, USA. Glob Change Biol 1111:
307–21.

Scholten H and Udink ten Cate AJ. 1999. Quality assessment of
the simulation modeling process. Comput Electron Agr 2222:
199–208.

Sequeira RA, Olson RL, and McKinion JM. 1997. Implementing
generic, object-oriented models in biology. Ecol Model 9944:
17–31.

Sturtevant BR, Gustafson EJ, Li W, and He HS. 2004. Modeling
biological disturbances in LANDIS: a module description and
demonstration using spruce budworm. Ecol Model 118800: 153–74.

Wilson GV. 2006. Where’s the real bottleneck in scientific com-
puting? Am Sci 9944: 5–6.

260

wwwwww..ffrroonnttiieerrssiinneeccoollooggyy..oorrgg © The Ecological Society of America

