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Abstract We demonstrate a method to evaluate the

degree to which a meta-model approximates spatial

disturbance processes represented by a more detailed

model across a range of landscape conditions, using

neutral landscapes and equivalence testing. We

illustrate this approach by comparing burn patterns

produced by a relatively simple fire spread algorithm

with those generated by a more detailed fire behavior

model from which the simpler algorithm was derived.

Equivalence testing allows objective comparisons of

the output of simple and complex models, to

determine if the results are significantly similar.

Neutral landscape models represent a range of

landscape conditions that the model may encounter,

allowing evaluation of the sensitivity and behavior of

the model to different landscape compositions and

configurations. We first tested the model for universal

applicability, then narrowed the testing to assess the

practical domain of applicability. As a whole, the

calibrated simple model passed the test for significant

equivalence using the 25% threshold. When applied

to a range of landscape conditions different from the

calibration scenarios, the model failed the tests for

equivalence. Although our particular model failed the

tests, the neutral landscape models were helpful in

determining an appropriate domain of applicability

and in assessing the model sensitivity to landscape

changes. Equivalence testing provides an effective

method for model comparison, and coupled with

neutral landscapes, our approach provides an objec-

tive way to assess the domain of applicability of a

spatial model.

Keywords Equivalence � Fire model �
Meta-model � Neutral landscape � Scale

Introduction

Landscape-scale modeling is hampered by our lack of

empirical understanding of key processes at broad

spatial scales (Levin 1992; Schneider 1994; Urban

2005; Wu and Hobbs 2002). One solution to this

problem is to ‘‘scale-up’’ more detailed and finer-

scale models that are more closely connected to

empirical data. This meta-model approach entails

generalizing the finer-scale model by extracting only

those components that are useful at the broader scale

(Urban et al. 1999). Yet meta-modeling can be

unreliable when scaling spatial processes such as

dispersal and spread because spatial processes often
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respond to landscape structure in a nonlinear fashion

(Hargrove et al. 2000; Stauffer and Aharony 1992)

due to directional interactions (Strayer et al. 2003)

and spatial autocorrelation (McKenzie et al. 1996).

Landscape ecologists require methods to objectively

evaluate whether spatial processes are appropriately

scaled within a meta-modeling framework, accurately

representing the spatial components of the finer-scale

model.

Objective comparison between models requires a

clear definition of model similarity. Equivalence

testing is used to determine whether two ‘‘treat-

ments’’ are practically similar (Parkhurst 2001), and

may be applied for both model validation and

comparison (Robinson et al. 2005; Robinson and

Froese 2004). Equivalence testing is derived from

bioequivalence testing [e.g., (Berger and Hsu 1996;

Wellek 2003)], which is well established in biomed-

ical research [e.g., (Zariffa et al. 2000)]. The

approach is often used in the testing of generic

medicines where the requirements go beyond failing

to find statistical difference in effectiveness to having

to demonstrate statistical equivalence. The burden of

proof in equivalence tests is reversed from traditional

comparison techniques [e.g., Fisher’s significance

tests (Welsh et al. 1996)], using the hypothesis of

dissimilarity as the null hypothesis, meaning that

rejection of the null hypothesis results in a conclusion

of significant similarity. Rather than a conclusion that

no significant difference is observed (sometimes

interpreted as similarity), these tests allow

the conclusion that there is significant similarity or

equivalence. Robinson and Froese (2004) and

Robinson et al. (2005) provide thorough descriptions

of the differences and benefits of equivalence testing,

with examples applying equivalence testing to non-

spatial ecological models. Here we apply their

approach to compare output from spatial models

using several response variables that describe the

spatial patterns.

The domain of applicability for a spatial process

sensitive to landscape pattern can be determined by

evaluating its behavior across a range of landscape

conditions. Neutral landscape models are models that

generate an expected spatial pattern in the absence of

specific landscape processes (Gardner et al. 1987;

With and King 1997). Neutral landscapes can objec-

tively represent a range of conditions that a landscape

model may encounter by controlling the proportions

and aggregation of landscape classes, allowing a

modeler to evaluate the sensitivity and behavior of a

given spatial process to different elements of pattern.

Here we illustrate how equivalence testing can be

used in conjunction with neutral landscapes to

evaluate first the universality, and second the domain

of applicability of a modeled spatial process in a

meta-modeling context.

Our objective was to demonstrate a method to

evaluate the degree to which a simple fire spread

algorithm approximated the burn patterns simulated

by a more detailed fire-behavior model from which it

was derived, using a combination of neutral land-

scapes and equivalence testing. We calibrated the

algorithm using a single landscape condition and

range of weather conditions, and then evaluated the

calibrated algorithm across a range of landscapes and

weather conditions using a two stage process—first

testing for universality of the algorithm and then by

evaluating its domain of applicability if it failed the

universality test. Our approach has practical applica-

tion for meta-modeling strategies that simplify spatial

processes to scale-up fine-scaled behavior to broader

spatial scales.

Methods

Meta-modeling approach

Fire modeling varies in complexity from simple

statistical models to complex, physically-based fire

behavior models (Albright and Meisner 1999). Our

research evaluating landscape change in response to

fire disturbance regimes over long time periods

requires simulated burn patterns that are sensitive to

landscape patterns of fuel types, but where the details

of fire behavior within a burn event are not relevant

and merely add significant computation time. We

therefore calibrated a simple fire spread algorithm,

outlined below, to match the shape characteristics of

fires produced by a more detailed fire behavior model

[FARSITE; (Finney 2004)]. We extracted the model

components relating specifically to spread, and

generalized them to the level of detail suitable for

our simulation model. We then evaluated the gener-

ality of the calibrated model by applying both models

to neutral landscapes with different proportions and
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spatial arrangements of fuel types and compared the

results using equivalence tests.

Model descriptions

FARSITE is a deterministic model (when spotting is

not enabled) that simulates the spread and behavior of

fires in response to terrain, fuel, and weather condi-

tions. Fire spread is simulated based on physical

equations for spread rates (Albini 1976), crown fire

spread (Van Wagner 1993), spotting (Albini 1979),

point-source fire acceleration (Forestry Canada Fire

Danger Group 1992), and fuel moisture (Hartford and

Rothermel 1991). In our case we were focused on

modeling surface fire regimes, so we did not enable

spotting in our FARSITE simulations.

Our simple spread algorithm is an adaptation of the

minimum travel time method proposed by Finney

(2002) that uses directional wind bias and maximum

(i.e., downwind) spread rates defined by wind strength

and fuel type to produce a relative time cost surface

from the ignition point to each cell in a potentially

burned zone. Wind bias is defined by the ratio of the

major to minor axis of an ellipse that increases as a

function of five classes of wind strength. Wind bias

normal to the fire front and relative to the ignition

point is then estimated for each wind class using

Eqs. 3 and 5 of Finney (2002). This wind bias is

converted into an index (WIND) ranging between 0

and 1 by dividing all values by the maximum wind

bias (i.e., directly downwind from the ignition point).

Fuel types are also assigned to five classes, and the

user assigns the maximum rate of spread (RATEMAX)

to each fuel type and wind speed combination. In this

implementation, the effects of slope on spread rate

and elliptical dimensions are not considered.

For a given fire event, an ignition cell is identified, a

wind speed and direction are randomly selected from a

user-defined distribution, and a fire size is randomly

selected from a lognormal distribution (Yang et al.

2008). Wind bias relative to the ignition point (WIND)

is estimated for each cell that could potentially burn

given the wind speed and fire size selected. RATEMAX

is then assigned to each cell based on the fuel class for

that cell and the wind speed for the event. Actual spread

rate (RATEACT) is calculated by:

RATEACT ¼WINDWW � RATEWF

MAX ð1Þ

where WW and WF are calibration parameters that

determine the relative importance of wind bias and

fuel type, respectively, in generating the fire shape.

The inverse of RATEACT is used as a cost surface to

calculate the minimum travel time to each pixel from

the ignition location. Minimum travel time is then

used to clip the fire extent to the preselected fire size,

defining its final shape.

Model parameterization

Our application landscape was the Lakewood sub-

district (780 km2) of the Chequamegon-Nicolet

National Forest (CNNF) in Wisconsin, USA (Sturt-

evant et al. 2009). This landscape contains a mixture

of cover types including deciduous, coniferous, and

mixed forests as well as open field and wetlands that

vary substantially in their relative flammability

(Sturtevant and Cleland 2007). Each type was

assigned to a standard fuel model (Albini 1976)

based on the expert opinion of local fire management

officers. These fuel types were then stratified into the

five fuel classes based on their relative rates of spread

(Table 1; Fig. 1). Wind speed data from a local

Table 1 Landscape

proportions for standard

fuel models (Albini 1976)

and the five aggregated fuel

classes used in the simple

fire algorithm, for the

original landscape, and the

[L ? 8] and [L ? 1]

landscapes

Standard fuel model Fuel

class

Mean spread rate

(m/min)

Original

landscape

[L ? 8]

landscape

[L ? 1]

landscape

0 (No fuel) 0 0 0.0326 0.0249 0.0286

1 (Short grass) 4 37.6 0.1883 0.1436 0.2883

4 (Chaparral) 5 41.4 0.0130 0.0099 0.0114

8 (Closed timber litter) 1 0.5 0.5788 0.6788 0.5075

9 (Hardwood litter) 2 2.0 0.1759 0.1341 0.1542

10 (Timber with litter &

understory)

2 2.0 0.0106 0.0081 0.0093

11 (Light logging slash) 3 2.8 0.0008 0.0006 0.0007
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weather station were used to assign midpoint wind

speeds to the five wind strength classes according to

percentiles defined by the US Forest Service fire

danger rating system, where low, moderate, high,

very high, and extreme wind speeds correspond with

50, 75, 90, 95, and 98th percentiles, respectively.

RATEMAX parameters were estimated by simulating

fires on uniform fuels in FARSITE and averaging the

downwind spread rates for each fuel and wind class

for the range of possible fuel moisture conditions for

the application landscape. The rate estimates could

also be calculated using BehavePlus (Andrews et al.

2005). Wind bias for each wind strength class was

estimated using Eq. 79 of the Canadian fire behavior

prediction system (Forestry Canada Fire Danger

Group 1992).

Model calibration

Our simple fire spread algorithm is computationally

efficient, but differs from Finney (2002) and

FARSITE because maximum wind bias is always

directly downwind from the ignition point, rather

than locally estimated from a dynamic fire front. This

difference results in shape differences for fires

responding to barriers and other fuel heterogeneity.

To minimize these differences, we calibrated our

spread algorithm by running the model over a range

of combinations (0.50–1.00 by 0.05 for each variable)

of the relative weights of wind and fuel factors (WW

and WF) affecting fire spread (Eq. 1), with the goal of

making fire patch metrics statistically equivalent

across a range of fire weather scenarios (see ‘‘Statis-

tical methods’’).

The fire algorithm was calibrated across nine

different fire weather scenarios representing two

factors (wind speed and fuel moisture) each with three

different levels (low, high, and extreme) based on local

fire danger ratings. Six independent fire events were

simulated per scenario, where two ignition points were

located on each of the three most common fuel types,

always in the same locations across scenarios. The

Fig. 1 Map of the fuel

classes and ignition

locations in the calibration

landscape
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ignition locations were randomly located within the

fuel types, with a restriction preventing ignitions to be

located within 5,000 m of the map edge to minimize

the occurrence of fires burning to the edge of the map.

Fires were simulated in FARSITE using a 12-h

simulated burn period, and burned areas were calcu-

lated for each simulated fire event. Fire events were

then simulated using our fire spread algorithm for the

same ignition points using identical wind strength and

direction, and stopped spreading when the size reached

the FARSITE size. The stochastic nature and broad

scale of the intended application of this spread

algorithm within the forest landscape succession fire

models [e.g., LANDIS simulation model (He and

Mladenoff 1999)] make the actual cell-by-cell agree-

ment of the burned areas less important than the spatial

characteristics of the burn patches. As long as the

algorithm produces realistic patterns of burn patches in

response to fuel configuration and composition on a

landscape, it is not critical that the actual same sites are

burned. Therefore, rather than evaluating the overlap

of the burned areas between the two models, we chose

five variables to compare fire events simulated by each

model: the proportion of burned area in each of the

three most common fuel classes, and the shape

complexity and elongation of the simulated fire

patches, estimated using SHAPE and CIRCLE metrics

from FRAGSTATS (McGarigal and Marks 1995),

respectively.

Model evaluation

After completing the calibration of model parameters

using the real landscape, we then assessed the domain

of applicability of the calibrated spread algorithm

within novel landscapes by applying it to neutral

landscapes and testing the equivalence of the burn

patterns. The first stage of this evaluation was to

determine if the model was universally applicable

across a broad range of landscape conditions. If the

model performed equally well (i.e., statistically

equivalent) across the full range of conditions tested,

we would conclude that the model was universally

applicable across those conditions and the evaluation

would end with this stage. If the model failed to

perform equally well, the second stage was designed

to evaluate the practical domain of applicability of

the model, defined as the range of conditions for

which the model outputs were statistically equivalent

to FARSITE outputs for the same conditions. In this

second stage we tested a narrower range of conditions

starting with those most similar to the calibrated

condition, where the model would presumably per-

form the best. By systematically changing the

conditions from the calibrated condition, the bounds

of the domain of applicability were identified.

For the first stage of evaluation (universal appli-

cability), we initially generated five neutral

landscapes, representing three levels of fuel type

proportions and three different fuel configurations,

using the program RULE (Gardner 1999). RULE uses

a midpoint displacement algorithm (Saupe 1988) to

generate multi-fractal landscapes, with the degree of

aggregation controlled by a user-defined parameter,

H (Gardner 1999). One random (R) and two multi-

fractal (F) maps were generated with fuel types and

proportions identical to the Lakewood landscape, but

with different levels of spatial aggregation: random

(noted as R0), H = 0.3 (F3), and H = 0.6 (F6)

(Table 2). Two additional multi-fractal maps were

created with moderate spatial aggregation (F3) but

with modified fuel proportions representing either a

10% increase of the most common and least

flammable fuel type (Fuel Model 8, noted as

[L ? 8]) or a 10% increase in the second most

common and most flammable fuel type (Fuel Model

1, [L ? 1]) (Tables 1, 2). For each evaluation

landscape, six combinations of wind strength and

fuel moisture levels (low, high or extreme) were used

to define the evaluation scenarios, with six

Table 2 Landscape composition and configuration combina-

tions used for model evaluation

Fuel model composition

Original

(same as

real

landscape)

Fuel Model

8 ? 10%

[L ? 8]

Fuel Model

1 ? 10%

[L ? 1]

Fuel configuration

(aggregation)

index (H)

0 R0 N/A N/A

0.1 F1 F1 [L ? 8] F1 [L ? 1]

0.2 F2 F2 [L ? 8] F2 [L ? 1]

0.3 F3 F3 [L ? 8] F3 [L ? 1]

0.6 F6 N/A N/A

‘‘N/A’’ indicates combinations that were not evaluated. ‘‘Fuel

Model 8 ? 10%’’ and ‘‘Fuel Model 1 ? 10%’’ indicate the

proportion of Fuel Model 8 or Fuel Model 1 has been increased

by 0.10 from the original fuel composition (Table 1)
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independent fires simulated for each scenario, result-

ing in 36 fires simulated for each landscape. For our

goal of initially assessing the universal applicability

of the model, including all nine wind and fuel

moisture combinations and altered proportions for the

R0 and F6 landscapes, was not necessary and would

have more than doubled the simulations required.

Using this sample of scenarios allowed us to evaluate

the full range of conditions, and to use the output data

to make relative comparisons.

For the second stage of evaluation (domain of

applicability), we generated six additional neutral

landscapes representing two additional levels of

spatial aggregation: H = 0.1 (F1) and H = 0.2

(F2), with the same three levels of fuel proportions

(Original, [L ? 1], [L ? 8]) used for the F3 land-

scapes (Table 2). In combination with the F3

landscapes, these landscapes provided a narrower

range of conditions similar to the calibration condi-

tion, varying in fuel configuration and proportion,

with which to assess a more refined domain of

applicability for the model.

Statistical methods

We applied a regression-based test for equivalence

(Robinson et al. 2005) to test for similarity between

each fire metric for our simple algorithm (observed)

and those generated by FARSITE (predicted). This

approach tests both the intercept and slope of a

regression between the observed and predicted val-

ues. This regression framework uses the intercept to

evaluate population-level agreement (unbiasedness)

and the slope to evaluate point-to-point agreement

(i.e., the individual pairs of observations are similar).

Because our data did not meet assumptions of

normality, we used the non-parametric bootstrap

method described by Robinson et al. (2005) with

10,000 replicate estimates of the intercept and slope.

Following the suggestion of Robinson et al. (2005),

we report the minimum interval of equivalence (MIE)

as the smallest interval that would lead to rejection of

the null hypothesis of dissimilarity. MIE provides a

measure of how close the test was to rejecting the null

hypothesis—the equivalent of reporting confidence

intervals for other statistical tests—with a standard-

ized value. Units of MIE are proportions of the mean

[e.g., 0.25 indicates the interval of equivalence is

mean ± (0.25 9 mean)]. We conducted equivalence

tests for the five variables in two stages. We first

calculated MIE values for the proportions of burned

area in each of the three most common fuel classes and

for the SHAPE and CIRCLE indices. To give SHAPE,

CIRCLE, and fuel proportions equal weight in our

evaluations, and because each MIE value had the same

units, we averaged the MIE values for the three fuel

classes, giving each of the three main outputs (SHAPE,

CIRCLE, average Fuel) one value for comparison.

With a target joint size of 0.05, the Bonferroni-adjusted

a for each of the three main tests (SHAPE, CIRCLE,

average Fuel) was a = 0.017. The Bonferroni-

adjusted a for each of the three individual fuel tests

was a = 0.006. Each of these a values was further

adjusted within the R program to account for the two

regression tests (slope and intercept). All equivalence

testing was performed using code for R (R Develop-

ment Core Team 2007) provided by Andrew Robinson

(package Equivalence v. 0.4.1; http://www.bio

metrics.mtu.edu/CRAN/web/packages/equivalence/

index.html).

Although we evaluated both unbiasedness and

point-to-point agreement in the equivalence tests, we

focus here on the point-to-point agreement because

this assesses whether the population-level agreement

is for the right reason. We also found point-to-point

agreement tests to consistently have larger MIE

values than the unbiasedness tests, implying that

point-to-point agreement was essentially the limiting

factor for determining equivalence. To have one final

MIE value to test, we calculated an overall MIE value

as the average of the SHAPE, CIRCLE, and average

Fuel MIE values for the point-to-point agreement

test. Robinson et al. (2005) use intervals of equiva-

lence of ±25% in their example equivalence tests,

which we used as a threshold for determining

statistical equivalence.

Results

Calibration

During calibration, we found the lowest average MIE

of 0.20 for point-to-point agreement when WW had a

weight of 1.00 and WF had a weight of 0.65 (Table 3).

In the calibrated model, the CIRCLE variable had the

largest MIE for point-to-point agreement, while the

average fuel proportion had the best agreement. As a

592 Landscape Ecol (2009) 24:587–598

123

http://www.biometrics.mtu.edu/CRAN/web/packages/equivalence/index.html
http://www.biometrics.mtu.edu/CRAN/web/packages/equivalence/index.html
http://www.biometrics.mtu.edu/CRAN/web/packages/equivalence/index.html


whole, the calibrated model (average MIE) passed the

test for significant equivalence for both unbiasedness

and point-to-point agreement using the ±25% thresh-

old. Of the individual components, only the CIRCLE

variable failed the point-to-point test. In addition to

quantitative similarities, the burned areas appeared

visually similar (Fig. 2).

Evaluation for universal applicability

Evaluation scenarios on neutral landscapes show that

model performance decreased when the conditions

changed from the calibration scenarios (Table 3).

Unbiasedness and point-to-point agreement

decreased for each of the variables, despite the

increase in sample size. As in the calibration

scenarios, the CIRCLE index had the poorest point-

to-point agreement and the fuel proportions had the

best. Only the fuel proportions passed the test for

equivalence, while the SHAPE, CIRCLE and the

model as a whole failed this test.

By breaking down the evaluation scenarios into

groupings by landscape, we identified conditions under

which the model performed best and worst. Examining

Table 3 Minimum intervals of equivalence (MIE) for unbi-

asedness (intercept) and point-to-point agreement (slope) for

each variable for the calibration using the real landscape, and

universal evaluation with all neutral landscapes, with the

calibrated relative weights for wind and fuel of 1.00 and 0.65,

respectively

Variable Calibration (real landscape) Universal test (neutral landscapes)

Unbiasedness Point-to-point Unbiasedness Point-to-point

n 54 54 288 288

SHAPE 0.07 0.16 0.15 0.47

CIRCLE 0.05 0.37 0.09 0.55

Fuel proportion average 0.06 0.08 0.09 0.14

Average 0.06 0.20 0.11 0.39

Units of MIE are proportions of the mean [e.g., a value of 0.25 indicates the interval of equivalence is mean ± (0.25 9 mean)].

Numbers in bold mark values at or below the 0.25 threshold, indicating significant equivalence

Fig. 2 Example fire burn

patches for the calibration

landscape (left) and F2

evaluation landscape

(right), generated from

FARSITE (top) and the

simple model (bottom). The

ignition location and wind

direction is indicated by the

arrow. The patch attributes

are included for each

burned area. The SHAPE

and CIRCLE indices come

from FRAGSTATS, and

Fuel 1, Fuel 2, and Fuel 4

indicate the proportion of

the burned area in Fuel

Classes 1, 2, and 4,

respectively
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the three landscapes with the original fuel proportions

that differed only in fuel configuration, we observed

that the model as a whole performed considerably

better in the F3 landscape than either then R0 or F6

landscapes (Table 4). Examining the three F3 land-

scapes that differed only in fuel proportions, we

observed that the model performed better on both of

the alternate proportions than on the original propor-

tion landscape, and showed the best results for the

[L ? 8] landscape (Table 5). All of the five landscapes

we evaluated failed the overall (average) tests for

equivalence for point-to-point agreement at the ±25%

threshold, although some individual tests for the fuel

proportions were below the threshold.

Evaluation for domain of applicability

After concluding that the model was not universally

acceptable, we narrowed our focus to finding the

range of conditions, if any, where the model outputs

would pass the overall equivalence tests. We nar-

rowed the range of fuel configurations being tested to

those most similar to the calibration condition (F1,

F2, F3), and included the same three fuel proportions.

None of the combinations of fuel configuration and

fuel proportions that we evaluated passed the test for

point-to-point agreement at the ±25% threshold

(Fig. 3). The F2 landscape had consistently better

agreement than the F1 and F3 landscapes, and the

model performed best on the [L ? 8] landscapes. For

individual fires, burned areas with quantitatively

similar attributes did not necessarily look similar

visually (Fig. 2). In all evaluation landscapes, the

average MIE for point-to-point agreement was larger

than the MIE for the unbiasedness test (Tables 4, 5).

With only one exception each, the point-to-point MIE

for the CIRCLE variable was larger than for the

SHAPE and fuel proportions for each landscape.

Table 4 Minimum intervals of equivalence (MIE) for unbi-

asedness (intercept) and point-to-point agreement (slope) for

each variable for the separate evaluation landscapes with the

original fuel proportions and varied configurations, with the

calibrated relative weights for wind and fuel of 1.00 and 0.65,

respectively

Variable R0 F3 (original) F6

Unbiasedness Point-to-point Unbiasedness Point-to-point Unbiasedness Point-to-point

n 36 36 36 36 36 36

SHAPE 0.23 0.75 0.17 0.54 0.19 0.62

CIRCLE 0.15 1.00 0.13 0.79 0.15 0.94

Fuel proportion average 0.13 1.05 0.16 0.15 0.26 0.25

Average 0.17 0.93 0.15 0.49 0.20 0.60

Units of MIE are proportions of the mean [e.g., a value of 0.25 indicates the interval of equivalence is mean ± (0.25 9 mean)].

Numbers in bold mark values at or below the 0.25 threshold, indicating significant equivalence

Table 5 Minimum intervals of equivalence (MIE) for unbi-

asedness (intercept) and point-to-point agreement (slope) for

each variable for the separate evaluation landscapes with the

F3 configuration and varied fuel proportions, with the

calibrated relative weights for wind and fuel of 1.00 and

0.65, respectively

Variable F3 [L ? 8] F3 [L ? 1]

Unbiasedness Point-to-point Unbiasedness Point-to-point

n 36 36 36 36

SHAPE 0.15 0.42 0.24 0.74

CIRCLE 0.12 0.61 0.21 0.54

Fuel proportion average 0.11 0.11 0.14 0.09

Average 0.13 0.38 0.20 0.46

See Table 4 for results for the original fuel proportions. Units of MIE are proportions of the mean [e.g., a value of 0.25 indicates the

interval of equivalence is mean ± (0.25 9 mean)]. Numbers in bold mark values at or below the 0.25 threshold, indicating

significant equivalence
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Discussion

The equivalence tests in our two-stage process

answer three important questions. How well can we

calibrate the model? Is the model sensitive to

landscape changes? What is the domain of applica-

bility of the model?

Calibration

Equivalence tests provided an objective means for

selecting the best parameter values during calibration.

Averaged MIE values (average of SHAPE, CIRCLE,

and average Fuel) provided a single, globally-rele-

vant number to guide the calibration. Alternatively

we could have based the calibration on MIE for a

single variable, rather than averaging MIE values

across multiple variables, if one specific variable

were more critical than others. Our calibrated model

performed reasonably well on the target landscape,

with the average MIE values for both unbiasedness

and point-to-point agreement passing the ±25%

equivalence test. The CIRCLE variable alone failed

the equivalence test, suggesting the model as a whole

would still be useful for applications where accu-

rately representing patch elongation was not critical.

This calibration approach identified the parameter

values with the greatest average equivalence. Any

individual fire patch may be different between the

model outputs, but as a whole, the fires patterns were

as equivalent as possible under the tested conditions.

Evaluation

Although it would be ideal for our simplified model

to be significantly equivalent to the complex model in

all aspects of the output, the nature of scaling up a

model (in this case, simplifying the fire spread

procedure) implies that there will be differences.

Whether or not the resulting differences are accept-

able is the decision of the model user, and this

process provides objective information to help make

that decision. Our evaluation showed that this sim-

plified model is sensitive to changes in landscape

structure and composition. In fact, our model failed to

produce significantly equivalent results for any

landscape other than the calibration landscape. This

implies that the meta-model should not be used for

simulations on landscapes that differ much from the

calibrated condition, without first recalibrating the

model parameters.

Our evaluation of the domain of applicability

failed to identify any neutral landscapes where the

model would produce statistically equivalent results.

However, this evaluation can still provide valuable

information by looking at the relative changes in

average MIE as the landscapes change. Evaluation

showed that the model equivalence within the F2

landscape was most similar to that observed in the

calibration (i.e., real) landscape. The relative sensi-

tivity of burn patterns to fuel composition and fuel

configuration observed for the F2 landscape can

indicate how sensitive fire patterns would be to

analogous changes within the real landscape. For

example, a 50% change in fuel connectivity (H = 0.2

versus H = 0.1 or 0.3) results in changes up to 24%

in average MIE (Fig. 3). Meanwhile, a 10% change

in fuel proportions [L ? 8] can change average MIE

by 35%. We can infer from these results that the

model can be more sensitive to changes in fuel

proportions than configurations within that domain.

The choice of landscapes used for both calibration

and evaluation are important. Preliminary calibration
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Fig. 3 Average minimum intervals of equivalence (MIE) for

point-to-point agreement tests for landscapes across three

levels of fuel proportions (original, [L ? 8], [L ? 1]) and three

levels of fuel configuration (F1, F2, F3), with the calibrated

relative weights for wind and fuel of 1.00 and 0.65,

respectively. Units of MIE are proportions of the mean [e.g.,

a value of 0.25 indicates the interval of equivalence is

mean ± (0.25 9 mean)]. The dotted line represents the

maximum threshold for significant equivalence (0.25)
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trials (not shown) applied to our neutral landscapes

instead of the real landscape, resulted in different

calibrated values for WW and WF. This difference

reinforces the sensitivity of this particular model to

the landscape configuration of fuels, and also

suggests that the range of neutral landscapes con-

sidered depart substantially from the real landscape.

Li et al. (2004) determined that neutral landscapes

may not accurately represent some aspects of real

landscapes, though other methods for neutral land-

scape generation are available [e.g., (Gardner and

Urban 2007)]. Despite some of the limitations of

neutral landscapes, the ability to represent multiple

landscapes and systematically alter the landscape

properties provides a strong foundation for equiva-

lence testing of alternative models of spatial

processes as they interact with spatial structure

inherent within landscapes.

While our evaluation explicitly evaluated the

domain of applicability of our simplified model with

respect to fuel type proportions and configuration,

other dimensions of fire spread were not evaluated—

though they could be using a similar approach. For

example, our simplified model did not consider either

topographic influence on fire spread or spotting

behavior often associated with crown fire behavior.

As such it should be conservatively applied to

situations where topography is not a strong influence

on fire behavior, and where fire dynamics are

constrained to surface fires. Additional equivalence

tests applied outside of this conservative domain,

using the approach outlined here, could address the

range of appropriate applicability in these other

dimensions.

Advantages and disadvantages

Our approach provides some advantages over alter-

native methods for defining the relative value and

applicability of a model. One alternative method in

the field of fire modeling is to compare simulated

burn patterns with patterns of real fires (Fujioka

2002). One advantage of the model to model

comparison approach we used is that the models

can be tested across a range of fuel and weather

conditions, and is not limited to testing conditions of

a limited number of real fire events. The model to

model comparison, however, relies on the assumption

that the model used as the reference (in our case

FARSITE) is ‘‘correct’’. By calibrating the meta-

model to the output of the more complex model, the

assumptions of the complex model are effectively

carried into the meta-model.

Equivalence testing provides a more robust assess-

ment of whether the model outputs are practically and

statistically equivalent, rather than the traditional

approach of failing to find them to be different

(Robinson and Froese 2004). We have outlined how

the results of multiple variables can be combined into

one measure (average MIE) of how similarly the

models are performing. Using spatial pattern indices

for comparison variables, rather than simply assess-

ing overlap of the burn patches, allowed us to focus

on the pattern attributes most important to our

applications. Our output had examples that had

similar spatial attributes, but would not be deemed

similar based on a simple measure of their overlap

(Fig. 2).

Neutral landscape models can represent a range of

landscape conditions that a spatial model may

encounter. These landscapes provide a similar advan-

tage as the model to model comparison, in that they

remove the restrictions associated with working with

a single real landscape. Neutral landscapes combined

with equivalence testing provide an objective way to

assess the domain of applicability of a model.

The approach we have presented here also has

some statistical shortcomings that could be

improved. For example, an overall test of equiva-

lence incorporating multiple response variables (the

equivalent of MANOVA with a reversed hypothesis)

would be superior to averaging MIE values for

multiple variables. Such multivariate equivalence

tests have been developed in biomedical research

(Hauck et al. 1995), but as far as we know have not

been applied in an ecological context. Another

advantage that could be adopted from the bioequiv-

alence literature is allowing multiple variables to

have different equivalence thresholds, referred to as

multiple endpoints (Pocock et al. 1987). Although

informal evaluations showed that our results were

not highly sensitive to sample size, differences in

sample size among independent factors can make

direct comparisons of test results difficult. The

bootstrap method of Robinson et al. (2005) could

be modified to address this issue by randomly sub-

sampling data so that test results by factor are based

on the same sample size.
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