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[1] The eddy covariance measurements of carbon dioxide fluxes collected around the
world offer a rich source for detailed data analysis. Simple, aggregated models are
attractive tools for gap filling, budget calculation, and upscaling in space and time. Key in
the application of these models is their parameterization and a robust estimate of the
uncertainty and reliability of their predictions. In this study we compared the use of
ordinary least squares (OLS) and weighted absolute deviations (WAD, which is the
objective function yielding maximum likelihood parameter estimates with a double
exponential error distribution) as objective functions within the annual parameterization
of two respiration models: the Q10 model and the Lloyd and Taylor model. We introduce a
new parameterization method based on two nonparametric tests in which model deviation
(Wilcoxon test) and residual trend analyses (Spearman test) are combined. A data set
of 9 years of flux measurements was used for this study. The analysis showed that the
choice of the objective function is crucial, resulting in differences in the estimated annual
respiration budget of up to 40%. The objective function should be tested thoroughly to
determine whether it is appropriate for the application for which the model will be used. If
simple models are used to estimate a respiration budget, a trend test is essential to achieve
unbiased estimates over the year. The analyses also showed that the parameters of the
Lloyd and Taylor model are highly correlated and difficult to determine precisely, thereby
limiting the physiological interpretability of the parameters.
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1. Introduction

[2] The eddy covariance measurements of carbon dioxide
fluxes now being collected around the world offer a rich
source for detailed data analysis and estimation of Gross
Ecosystem Productivity (GEP) and respiration fluxes across
different biomes [Hagen et al., 2006; Owen et al., 2007;
Richardson and Hollinger, 2005; Stoy et al., 2006]. Models
play a key role in these analyses of the overall carbon
exchange of ecosystems: important uses of models are to
increase our physiological understanding of the functioning
of ecosystems, to fill gaps in data sets, and to calculate
overall budgets of the Net Ecosystem Exchange of CO2

(NEE), GEP, and respiration [Falge et al., 2001; Medlyn et
al., 2005; Moffat et al., 2007; Richardson et al., 2007;
Schwalm et al., 2007; van Wijk et al., 2002].

[3] Simple, aggregated models are attractive tools for gap
filling, budget calculation and upscaling in space and time
[Falge et al., 2001; van Wijk et al., 2002] as they are not
hampered by several of the drawbacks of detailed, process-
oriented model. These drawbacks include the need for a
large number of physiological and site-specific parameters,
as well as detailed input data, for model runs [van Wijk et
al., 2002; van Wijk and Bouten, 2002; Williams et al., 1997,
2001]. However, for these simple, aggregated models, two
important considerations are the method used to determine
model parameters, and robust estimates of the uncertainty and
reliability of their predictions [Hollinger and Richardson,
2005; Medlyn et al., 2005; Richardson et al., 2006a;
Richardson and Hollinger, 2005].
[4] Different methods are being used for the estimation of

parameter values of simple, empirical models of carbon
exchange, but the two most commonly used optimization
methods are the Ordinary Least Squares method (OLS)
[Stoy et al., 2006] and the Maximum Likelihood method
(ML) [Hollinger and Richardson, 2005; Richardson et al.,
2006a; van Wijk and Bouten, 2002; Williams et al., 2006].
The ML method is a probabilistic approach where, given the
model and the data, the model parameters most likely to
have generated the observed data are estimated. When the
uncertainty in the measurements is Gaussian with constant
variance, then OLS is the ML method. With eddy flux data,
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Hollinger and Richardson [2005] proposed that weighted
absolute deviations (WAD) optimization would yield ML
parameter estimates given that random flux measurement
uncertainties appear nonnormal and heteroscedastic.
Richardson and Hollinger [2005] showed that the choice
of the objective function (the basis for parameter optimiza-
tion, quantifying the data-model mismatch) has important
consequences for the subsequent predictions obtained from
the models: using the same model the predicted annual
respiration budget could differ up to 25% depending on the
objective function! Surprisingly, until now no detailed
critical evaluation of the choice of the objective function
within parameterization methods has been performed: nei-
ther in terms of the system parameters that have been
obtained, nor in terms of consequences for the application
for which the models are being used.
[5] In this study we will critically evaluate the use of

ordinary least squares (OLS) and weighted absolute devia-
tions (WAD) as objective functions for estimating parame-
ters of simple respiration models. The OLS and WAD
approaches are used to parameterize two simple respiration
models, to quantify the uncertainty in the parameter values,
and to estimate yearly respiration budgets using a 9-year
data set of eddy covariance CO2 exchange measurements of
Howland forest, in Maine, USA [Hollinger et al., 2004;
Hollinger and Richardson, 2005]. The drawbacks of both
methodologies are discussed and a new statistical approach
is presented which can be applied more reliably to estimate
annual budgets of respiration fluxes and in general to
parameterize simple carbon exchange models.

2. Methods

[6] In this study we compare three different parameteri-
zation methods, OLS, WAD, and a new approach, based on
combined Spearman and Wilcoxon tests. First, we introduce
the measurements and the two respiration models. Then we
describe how the optimizations were performed and how the
confidence intervals of the parameters were calculated.

2.1. Data

[7] Flux measurements were made at the Howland Forest
AmeriFlux site located about 35 miles north of Bangor, ME,
USA (45�150N, 68�440W, 60 m asl) in a mature stand
dominated by red spruce (Picea rubens Sarg.) and eastern
hemlock (Tsuga canadensis (L.) Carr.) with lesser quantities
of other conifers and hardwoods [Hollinger et al., 1999].
[8] Half hourly CO2 flux measurements were made at a

height of 29 m with a system consisting of model SAT-211/
3K 3-axis sonic anemometer (Applied Technologies, Inc.,
Longmont, CO, USA) and model LI-6262 fast response
CO2/H2O infrared gas analyzers (LiCor, Inc., Lincoln, NE,
USA), with data recorded at 5 Hz. The flux measurement
systems and calculations are described in detail by Hollinger
et al. [1999, 2004]. Deficiencies in the low and high
frequency response of the flux systems were corrected
by using the Horst/Massman approach of calculating a transfer
function based on stability and theoretical spectra [Massman,
2000] to correct for missing low frequency contributions and a
ratio of filtered to unfiltered heat fluxes to account for missing
high frequency fluctuations. Half-hourly flux values were

excluded from further analysis if the wind speed was below
0.5 m s�1, scalar variance was excessively high or extremely
low, rain or snow was falling, for incomplete half-hour
sample periods, or instrument malfunction. Data from noc-
turnal periods (defined by the photosynthetically active
photon flux density (PPFD) < 5 mmol m�2 s�1) were used
in this study but excluded when the friction velocity, u*, was
less than a threshold of 0.25 m s�1. We assumed that
nocturnal fluxes could be attributed exclusively to ecosystem
respiration. The sign convention used is that carbon flux out
of the ecosystem (i.e., respiration) is defined as positive. In
this study we used 9 years of data recorded between 1996 and
2004. The drawback of using ecosystem respiration data is
that they are a composite of different respiration components,
soil (including both autotrophic and heterotrophic compo-
nents), stem and leaf respiration; these diverse processes
likely differ in their sensitivities to environmental drivers,
particularly temperature. To model ecosystem respiration we
will assume soil temperature at 5 cm depth as the main driver.
This variable is typically strongly correlated with air temper-
ature, but less variable, which makes it a more stable driving
variable for ecosystem respiration as a whole. We chose to
use ecosystem respiration data, measured with the eddy
covariance methodology, rather than the more simple soil
respiration data which can be measured with soil chambers
because eddy covariance data are being increasingly used for
model parameter estimation [e.g. Braswell et al., 2005;Wang
et al., 2006] and exhibit non-Gaussian errors. In addition, a
multiyear data set was available with year-round data for all
years, which allowed us to robustly analyze annual respira-
tion patterns, and quantify the interannual variability in the
parameter estimates.

2.2. Models

[9] Two widely used respiration models were chosen for
this study. First, the so-called Q10 model [Van’t Hoff, 1898;
Black et al., 1996]:

R ¼ R10*Q
T�Trefð Þ=10

10 ð1Þ

Where R is the respiration flux in mmol m�2 s�1, T is
the soil temperature in �C, R10 and Q10 are fit parameters
and Tref, is a constant. Tref, which is the temperature at
which R = R10, has been given the usual value 10�C [van
Wijk and Bouten, 2002].
[10] Second, the Lloyd and Taylor model [Lloyd and

Taylor, 1994]:

R ¼ R0* exp
�E0

T þ 273:15� T0

� �
ð2Þ

Where R is the respiration flux in mmol m�2 s�1, T is the
soil temperature in �C and R0, E0 and T0 are fit parameters.

2.3. Parameterization Methods and Optimization
Criteria

2.3.1. Ordinary Least Squares (OLS) Estimation
[11] This is a standard method which is widely used in

ecological modeling [Janssen and Heuberger, 1995; Stoy et
al., 2006].The optimum parameter combination in this
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method is the one that has the minimum value of the sum of
squared errors (SSE):

SSE ¼
Xn
i¼1

Pi � Oið Þ2 ð3Þ

where for each observation i, Pi is the predicted and Oi the
observed value of the carbon flux (both in mmol CO2 m

�2

s�1) and n is the number of observations [see Janssen and
Heuberger, 1995].
[12] There are many optimization routines that are used to

determine which combination of parameter values results in
the minimum SSE value, and this is currently an active field
of research [Vrugt et al., 2003a, 2003b; Vrugt and Robinson,
2007]. In this study the methodology for optimization was
not considered important because in the models that were
applied at most three parameters needed to be determined,
the functions are smooth (no discontinuities in their first
order derivatives) and only global minima exist [Trudinger
et al., 2007]. We applied the Nelder-Mead direct search
method [Lagarias et al., 1998]. For each of the years a
separate optimization was performed resulting in a different
optimal parameter set for each year.
2.3.2. Maximum Likelihood Estimator
[13] Maximum likelihood (ML) [Edwards, 1972] is cur-

rently being applied widely in parameter estimation exer-
cises using carbon flux measurements [Richardson and
Hollinger, 2005; Williams et al., 2006; van Wijk and
Bouten, 2002]. The principle is as follows [Hogg et al.,
2005]: Let random variable X have a probability density
function f, where f has a known functional form apart from
some unknown parameters x1, x2, . . ., xm. In the framework
of ML, one sometimes writes f (x; x1, x2, . . ., xm) instead of
the more simple expression f (x), just to stress upon this
parameter dependency. Let X1, X2, . . ., Xn be a random
sample of n independent observations from the distribution
of X. Because of the independency of the observations, the
simultaneous probability density function of the random
sample is the product of the ‘‘individual’’ probability

density functions, so given by
Yn
i¼1

f (xi; x1, x2, . . ., xm),

and thus a function of x1, x2, . . ., xn and depending on the
unknown parameters x1, x2, . . ., xm. Once the sample has
been physically drawn, one can fill in the outcomes x1,
x2, . . ., xn of the random sample into the simultaneous
probability density function as given above. The result is no
longer a function of x1, x2, . . ., xn, but only a function of the
unknown parameters x1, x2, . . ., xm, so, once the observed

values have been filled in, the expression
Yn
i¼1

f(xi; x1, x2, . . .,

xm) shrinks to be a function of x1, x2, . . ., xm only, which is
the so-called likelihood function. The latter function can be
maximized to x1, x2, . . ., xm. Maximizing values x̂1, x̂2, . . .,
x̂m are the so-called Maximum Likelihood (ML) estimators.
These ML estimators are normally found by means of
numerical optimization subroutines, quite often applied to
the logarithm of the likelihood function, which is easily
proven to have exactly the same set of maximizing values.
[14] A simple example of ML estimation, that even can

be solved algebraically, is as follows. Let X be a random

variable having a Normal distribution with unknown param-
eters m and s2. It is well-known that for its probability
density function f holds that

f x;m; s2
� �

¼ 1ffiffiffiffiffiffiffiffiffiffi
2ps2

p e�
1
2

x�m
sð Þ2 ð4Þ

The simultaneous probability function of a random sample
X1, X2, . . ., Xn takes the form

Yn
i¼1

1ffiffiffiffiffiffiffiffiffiffi
2ps2

p e�
1
2

xi�m
sð Þ2 ¼ 2ps2

� ��n=2
e
� 1

2s2

Pn
i¼1

xi�mð Þ2

ð5Þ

which, once the outcomes x1, x2, . . ., xn of the random
sample have been filled in, is a function of m and s2 only,
the so-called likelihood. Maximization of the log likelihood
is equivalent to minimization (to parameters m and s2) of
the expression

n ln 2ps2
� �

þ 1

s2

Xn
i¼1

xi � mð Þ2 resulting in

m̂ ¼ x ¼ 1

n

Xn
i¼1

xi and ŝ2 ¼ 1

n

Xn
i¼1

xi � xð Þ2: ð6Þ

[15] Detailed carbon flux analyses using a data set in
which two flux towers were running parallel in the same
type of forest in Howland, Maine, USA, showed that the
carbon flux error can be approximated by a double expo-
nential (or Laplace) distribution rather than a normal distri-
bution [Hollinger and Richardson, 2005; Richardson et al.,
2006b]. The mathematical formula describing the probabil-
ity density function of the Laplace distribution around mean
m and with standard deviation s is

f xjm;sð Þ ¼ 1

2s
exp � x� mj j

s

� �
ð7Þ

By combining the equations for ML and the Laplace
distribution and taking the logarithm of the likelihood
function to get the log likelihood, the objective function to
be minimized for this ML formulation can be written as

ML ¼
Xn
i¼1

Pi � Oij j
si

ð8Þ

Where n is the number of observations and, for each
observation i, Pi is the predicted and Oi the observed value
of the carbon flux (both in mmol CO2 m

�2 s�1), and si is the
measurement uncertainty in mmol CO2 m�2 s�1 (for OLS,
si is assumed to be constant). Note again that the
maximization objective of the maximum likelihood estima-
tor has now become a minimization problem of the sum of
the absolute differences between predicted and observed
values, weighted by the measurement uncertainty. Thus for
eddy flux values, weighted absolute deviations (WAD)
optimization yields ML parameter estimates.
[16] Richardson et al. [2006b] showed that the s of eddy

covariance measurements scaled with the magnitude of the
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flux, and that this could be related to different environmen-
tal factors in order to yield uncertainty estimates that were
independent of actual errors. For respiratory fluxes (FCO2 >
0 mmol m�2 s�1) the uncertainty in forested ecosystems
could be estimated from

s ¼ 0:62þ 0:63*FCO2 ð9Þ

To determine the parameter combination that resulted in the
minimum value of the WAD objective function, the Nelder-
Mead direct search method was applied, similar to OLS.
2.3.3. Determining Parameter Uncertainty
[17] For OLS and WAD, the uncertainty of the optimized

parameters (which were fit separately to each year of data),
was determined using the bootstrapping method [Hagen et
al., 2006; Wasserman, 2007]. In bootstrapping, new data
sets are constructed from the original data set by resampling
with replacement. Each data set has the size of the original
data set and has the same expectancy value as the original
data set [Hagen et al., 2006; Wasserman, 2007]. For each
new data set thus obtained the optimal parameters are
determined using either OLS or WAD. By repeating the
sequence of constructing a new data set and estimating
the parameters based on this new data set 10,000 times the
confidence intervals and covariances of the parameter
values were estimated and the uncertainty in the overall
respiration budgets was quantified.

2.4. Combining Two Nonparametric Tests: Spearman’s
Rank Correlation Test and Wilcoxon Signed Rank Test

[18] When applying simple nonlinear models to estimate
annual carbon exchange budgets, WAD and OLS do not
necessarily yield unbiased results, and residuals may still
show some trend or correlation with one or more driving
variable or the measured variable itself. Here we propose
two additional criteria to address these deficiencies.
[19] (1) The obtained set of model deviations (i.e., pre-

dicted minus measured respiration fluxes) should not be
significantly different from zero.
[20] (2) The respiration model deviations should show no

monotonic trend in relation to the driving variable, soil
temperature.
[21] Extreme examples of acceptable and of nonaccept-

able model behavior according to these rules are shown in
Figure 1. Figure 1A shows acceptable and nonacceptable
behavior according to criterion 1. In Figure 1B both model
performances have acceptable behavior with regard to
criterion1, but the model performance represented by the
open dots is not acceptable for criterion 2. A Wilcoxon
signed rank test can be used to determine acceptable
parameter combinations with regard to criterion 1 and
Spearman’s rank correlation test can be used to determine
the acceptable parameter combinations with regard to cri-
terion 2 [Lehmann et al., 2005]. By testing which parameter
combinations fulfill both criteria, we can determine the
overall acceptable parameter combinations. Both models
we used in this study have soil temperature as the driving
variable. By checking criteria 2, a robust model application
across the whole range of soil temperature values is guar-
anteed, which is the reason why we chose the variable soil
temperature as the variable against which the trend should

be checked. For models with (many) more drivers than soil
temperature only, one could also decide to check for a trend
against the measured value of respiration.
2.4.1. Wilcoxon’s Signed Rank Test
[22] The Wilcoxon signed-rank test is a nonparametric

test which can be used to test whether the center of a
probability distribution deviates significantly from the zero
value [Lehmann et al., 2005]. The Wilcoxon signed rank
statistic W+ is computed by ordering the absolute values
jZ1j, . . ., jZnj, where Zi is the individual residual point
calculated using a measurement series of independent
observations and a simulated series, and by ranking the
ordered jZij from 1 to n. Denote 8i = I(Zi > 0) where I() is
an indicator function having the value 1 if Zi > 0 and
otherwise 0. The Wilcoxon signed ranked statistic W+ is
then defined as

Wþ ¼
Xn
i¼1

8iRi ð10Þ

where Ri is the rank of the ordered jZij.

Figure 1. Two criteria to evaluate model performance:
(A) presence or absence of systematic model deviation and
(B) presence or absence of a systematic trend in the model
deviation against variable X; in this study variable X is soil
temperature.
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[23] The expected value of W+ is

E0 Wþð Þ ¼ 1

4
n nþ 1ð Þ ð11Þ

The expected value has a variance given by

s2 Wþð Þ ¼ 1

24
n nþ 1ð Þ 2nþ 1ð Þ ð12Þ

The H0 hypothesis of no significant difference will be
rejected (Figure 1A, black dots) if

Wþ � E0 Wþð Þj j > 2:23s Wþð Þ ð13Þ

Rejection takes place if the statistical significance level (p-
value) is smaller than 0.0253 (as we will combine two
nonparametric tests both need to have a significance level of
0.0253, because that results after combination in a
significance level of p = 0.05).
2.4.2. Spearman’s Rank Correlation Test
[24] Spearman’s rank correlation test is a nonparametric

test of correlation: it assesses how well an arbitrary function
could describe the relationship between two variables,
without making any assumptions about the frequency dis-
tribution of the variables [Lehmann et al., 2005]. It does not
require the assumption that the relationship between the
variables is linear, nor does it require the variables to be
measured on interval scales; it can also be used for variables
measured at the ordinal level. In the Spearman test the
values of the independent variable of interest are converted
to ranks si, and the differences between these ranks and the
expected rank based on the value of the dependent variable
(ri) are calculated. The sum of the squared differences is
called d2 and given by:

d2 ¼
Xn
i¼1

ri � sið Þ2 ð14Þ

Where n = the number of pairs of values.
[25] The expected value of d2 is given by (assuming no

ties, i.e., exactly equivalent values of the variables)

E0 d2
� �

¼ 1

6
n n2 � 1
� �

ð15Þ

The variance of the expected value is given by

s2 d2
� �

¼ 1

36
n2 nþ 1ð Þ2 n� 1ð Þ ð16Þ

The H0 hypothesis of no trend is present will be rejected
(Figure 1B, black dots) if

d2 � E0 d2
� �		 		 > 2:23s d2

� �
ð17Þ

We applied Spearman’s rank correlation test in our study to
test whether there was a trend present between model
deviation and soil temperature. By using soil temperature as
the independent variable in the Spearman’s rank correlation
test, we assume that the individual soil temperature

measurements are independent of each other. For this
application the calculated ranks of the model deviation were
corrected for different s’s by dividing the ith model
deviation by si (from equation (7)).
2.4.3. Combining Spearman and Wilcoxon Tests
[26] We applied a Monte Carlo analysis to determine

acceptable parameter ranges according to the combined
Spearman and Wilcoxon tests. First, we defined the prob-
able ranges of parameter values. A parameter space grid
was set up with at least 100 classes per parameter and
model outcomes of all possible parameter pairs were calcu-
lated. After this the model output was tested to determine
whether it was acceptable according to both Wilcoxon and
Spearman. If the model output passed both tests the param-
eter combination was judged ‘‘acceptable’’. This approach
results in ranges of parameters, rather than one single
optimal parameter combinations. These ranges are the
confidence intervals and will also allow us to analyze the
covariance between acceptable parameter values. By
increasing the severity of the statistical tests for accepting/
rejecting the H0 hypotheses the acceptable parameter clouds
can be made smaller, even to such a degree that only one,
optimal, parameter combination will results from this
analysis. We did not take the latter approach as we think
that uncertainty intervals give us essential information for
interpreting the results of the parameterization and for
comparing results from one year to another.

2.5. Setup Analysis

[27] First, we started with analyzing in detail 1 year of the
9 years of data available, the year 2000. The OLS and WAD
methods were applied, together with the combined Spear-
man and Wilcoxon tests. The methods were evaluated in
terms of the parameter values obtained, their uncertainty
and the consequences for the respiration budgets calculated
with both the Q10 and the Lloyd and Taylor models. After
this, the methods were applied to all 9 years and their results
were compared.

3. Results and Discussion

3.1. Application of OLS and WAD

[28] The optimal parameters obtained for the two models
with WAD and OLS are presented in Table 1 together with
the annual budgets that were calculated on the basis of these
parameters. There are differences both between models (Q10

versus Lloyd and Taylor) and also for each model, param-
eterization differences depending on the objective function
used (WAD versus OLS). These translate to estimates of the
annual respiration budget that vary by almost 400 g C m�2

a�1. These results indicate that the difference in annual
respiration budget caused by the two respiration models is
minor compared to the differences caused by the different
objective functions [cf. Hagen et al., 2006]. The choice of
the objective function is therefore clearly an important step
in any parameterization exercise, as shown earlier by
Trudinger et al. [2007]. The performance of the Lloyd
and Taylor model, expressed in SSE (see equation (3)),
was between 5 to 10% better than the Q10 model, similar to
the results obtained by Richardson et al. [2006a].
[29] The cause of these strong differences in the estimated

respiration budgets can be seen in Figure 2. In this analysis
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the contribution of seven ranges of soil temperature to the
overall objective functions were calculated. Only the results
of the Lloyd and Taylor model are presented, but those of
the Q10 model are similar. The objective functions show a
strong difference in the distribution of the error contribution
over the soil temperature classes: whereas the largest
contribution in the OLS approach takes place at the higher
soil temperature ranges, the contribution is highest at the
lower soil temperature ranges for WAD. Because of weight-
ing by sigma (i.e., a division by sigma) and calculation of
absolute rather than squared deviations in WAD, high
respiration fluxes (which have larger uncertainties) get less
weight in the calculation of the overall objective function,
and these high respiration fluxes take place at high soil
temperature values. In Figure 2B the contribution of the
different soil temperature classes to the overall annual
respiration budget is shown. Not surprisingly the largest
contribution takes place at the higher soil temperature
values.
[30] The results of Figure 2 show that for WAD there is a

mismatch in terms of the ranges of soil temperatures which
contribute most to the error function and the ranges of
temperatures that contribute most to the key model output
for the model application. For the parameter estimation the
lower soil temperature values are most important for WAD,
and parameter combinations will therefore be especially
evaluated on whether they can represent the measured
fluxes at those temperature ranges. For the application of
the model to simulate annual respiration budgets this can
mean that parameters are not correctly chosen for the
representation of what is happening in the system at higher
ranges of soil temperature as it weights the observations at
the low temperature range too much. It is clear that
representing model performance in a single error function
that is not well chosen with regard to the application can
lead to misleading results. Further research is needed to
clarify whether the relative contribution to the overall
annual respiration budget should be matched in the error
function, or whether the same frequency distribution of soil
temperatures should be used in both parameterization and
application. In this study, the nighttime data used to param-
eterize the models have an over representation of low
temperatures compared to the overall soil temperature data
that are used to calculate the annual budget. This, in
combination with an imperfect model (i.e., that it can show
systematic deviations for certain ranges of carbon fluxes)
and a not completely symmetric residual distribution (i.e.,
the residual distribution is slightly skewed) can lead to an
amplification of the differences between results obtained by
using different objective functions as a result of different
weighting. In OLS weighting, the distributions of the

relative error contributions and the relative annual respira-
tion budget contributions match much better than for WAD,
and the estimated annual respiration budget is 30 to 40%
higher than that estimated by WAD using the same model.
This presents a dichotomy between approaches that best
weigh the nonrandom sample of soil temperatures (OLS)
and appropriately weigh the error probability density func-
tion of the data (WAD), although this does not necessarily

Table 1. Optimal Parameters Using the Ordinary Least Squares (OLS) and Maximum Likelihood (WAD)

Objective Functions for the Year 2000

Model
Optimization

Criteria R10, mmol m�2 s�1 Q10

Annual Respiration
Budget, g m�2 a�1

Q10 OLS 3.8 3.6 1251
WAD 2.7 4.7 923

R0, mmol m�2 s�1 E0, K T0, K

Lloyd & Taylor OLS 297.4 153.8 246.8 1230
WAD 66.2 80.7 256.4 882

Figure 2. Relative contribution of the summed model
error and the summed respiration budget per 2.5�C soil
temperature class to overall annual model error (A) and
overall annual respiration budget (B) for the year 2000.
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and OLS were not acceptable for the combined Spearman
and Wilcoxon test, also hold for the other years. These
results show that not only the optimal value is not accept-
able for the combined Spearman and Wilcoxon test, but in
most cases actually the complete uncertainty interval of the
parameters identified with the bootstrapping approach via
OLS or WAD weighting are not acceptable. This clearly
shows that the choice of the parameterization method is an
essential step and should be consistent to reliably compare
obtained parameter combinations across years and across
sites: if different criteria are used, results are not directly
comparable.
[38] The results presented in Figure 6 show that the two

parameters of the Q10 model could be identified with good
accuracy. This is in strong contrast to the results obtained
with the Lloyd and Taylor model (Figure 7). We only
present here the results of the years 2000 and 2001, but
the results obtained for the other years were similar to those
of 2000 and 2001. For all three parameterization methods it
was impossible to get a precise estimate for both Lloyd and
Taylor parameters. This means that the potential for iden-
tifying the parameters is low (their covariance is large) and
that therefore the physiological interpretability of these
parameters is low, at least when the model is parameterized
on an annual basis. This is a strong drawback for this model
if one wants to attach physical meaning to the model
parameters, and not merely use the resulting function for
interpolation or prediction. This means that the two models
tested in this study have contrasting behavior: the Q10

model has lower performance, but shows high parameter
identifiability, whereas the Lloyd and Taylor model has
higher model performance (also shown by Richardson et al.
[2006a]) but lower parameter identifiability.
[39] The consequences of the different ranges of accept-

able parameters identified by the three parameterization

methods are shown in Figure 8. There is a consistent off-
set between the different parameterization methods (see
also for indications of this Richardson et al. [2006a] and
Trudinger et al. [2007]), and also the pattern of high versus
low respiration budgets over the year is not consistent over
the methods. Interestingly, the large uncertainty in the
parameter estimates of the Lloyd and Taylor model
(Figure 7) do not lead to wide ranges in the simulated
respiration budgets, thereby showing that model output
compensation takes place along the correlation between
accepted values of R0 and E0.

3.4. Model Simplicity and Parameter Identification

[40] Respiration is a function of substrate pools which
vary in space and time [Dewar, 2000; Gifford, 2003]. In this
study we use two simple models that consider only a bulk
substrate pool and do not take into account many of the
feedbacks on respiration that occur within ecosystems. For
example, we know that in the short-term leaf respiration is
strongly affected by the rate of photosynthesis, and that in
the long term carbon allocation to different organs (e.g.,
leaves or roots) will affect the respiration of each of these
components. Using simple models like we did in this study
has the advantage that model parameters can be analyzed
relatively easily. It could however mean that effects of
several key factors on respiration that are not incorporated
into the models, for example leaf photosynthesis or varia-
tions of soil water content, are included only implicitly in
the values of the parameters, and in their variations. This
could hamper the interpretation of differences in model
parameters. For example, is the interannual variability in
model parameters over the 9 years caused by variations in
annual rainfall, amount of leaf area, or maybe by other
processes? This problem can be addressed by using more
detailed process-oriented models. However, the drawback
of using more process-oriented models is that they are
typically characterized by a large number of parameters,
and typically it is not feasible to determine site-specific
values for these parameters. Determining many parameters
in one analysis often introduces the problem of equifinality,
i.e., that different combinations of parameter values produce
the same simulated results, and this strongly limits the
possibility for accurate identification of parameter values,
and their interpretation in terms of ecosystem functioning.

4. Conclusions

[41] In this analysis in which parameters of two widely
used respiration models were identified on an annual basis,
it was clear the choice of the objective function is crucial.
Differences in the estimated annual respiration budget could
be up to 40%. The objective function should be tested
thoroughly to determine whether it is appropriate for the
application for which the model will be used. If simple
models such as the Q10 or Lloyd and Taylor relationship are
used to estimate a respiration budget, a trend test like
Spearman’s rank correlation test is essential to achieve
unbiased estimates over the year. The analyses also showed
that the parameters of the Lloyd and Taylor model are highly
correlated and difficult to determine precisely, thereby lim-
iting the physiological interpretability of the parameters.

Figure 8. Annual respiration budgets with the uncertainty
intervals calculated for Howland forest from 1996 to 2004,
using the Q10 and Lloyd and Taylor (LandT) models with
three optimization objectives: Least Squares (SSE),
Weighted Absolute Deviations (WAD) and the combined
Spearman and Wilcoxon tests (SpearWil). Error bars
represent the standard deviation of the mean annual
respiration budget value.
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