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Abstract

Insects and diseases are common disturbance agents in forested ecosystems. Severe outbreaks can cause significant changes
in tree species composition, age structure, and fuel conditions over broad areas. To investigate the role of biological disturbances
in shaping forest landscapes over time, we constructed a new “biological disturbance agent” (BDA) module for a landscape-level
forest succession and disturbance simulator, LANDIS. The BDA module is designed to simulate tree mortality following major
outbreaks of insects and/or disease. Major outbreaks are defined as those significant enough to influence forest succession, fire
disturbance, or harvest disturbance at landscape scales. Module design is flexible to accommodate a diversity of life history
traits characterizing destructive insects and diseases, and more than one BDA can be simulated to examine their interactions.
Five main elements control the probability of biological disturbance within the module: (1) local host dominance on a given
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ite; (2) host value modifiers that reflect environmental conditions and recent disturbance history; (3) host dominanc
ser-specified neighborhood; (4) the temporal outbreak pattern characteristic of the BDA, and (5) BDA dispersal in ca

he annual dispersal range of the BDA is small relative to the study area. In this paper, we describe the first four el
he BDA module, and present the initial testing of the module on a variety of neutral landscape patterns, using East
udworm as a test case. Our results are consistent with published successional patterns of spruce-fir and mixed fore
y spruce budworm, but also highlight areas of uncertainty in the spatio-temporal patterns of budworm-caused tree
nd biological disturbances in general. We suggest that the behavior of the module is consistent with the design an
urpose of LANDIS as a probabilistic landscape-level simulator of forest disturbance and succession.
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1. Introduction

Biological disturbances, such as insect and disease
outbreaks, are critically important agents of forest
change, causing tree mortality at scales ranging from
individual trees to entire regions. Damage caused
by biotic agents such as Eastern spruce budworm
(Choristoneura fumiferana) and mountain pine beetle
(Dendroctonus ponderosae) can dwarf other natural
disturbances (Fleming et al., 2000; Samman and
Logan, 2000), and interact synergistically with fire
disturbance by greatly enhancing fuel loading and
the risk of high-intensity fires (Hessburg et al., 1999;
Fleming et al., 2002). Due to their host-specificity,
biotic disturbances are also sensitive to host abun-
dance and landscape distribution, and therefore likely
respond to feedback associated with forest succession
and change (Bergeron and Leduc, 1998; Hessburg
et al., 1999). Depending on their severity and extent,
these disturbances have important and long-lasting
consequences for long-term forest composition and
pattern at landscape scales (Hessburg et al., 1999).

There are few examples of landscape-level biotic
disturbance–succession models published in the liter-
ature (seeRykiel et al., 1988andFall et al., 2001for
notable exceptions). Nonetheless, decades of research
and forest monitoring provide some insight into some
of the essential elements required to simulate interac-
tions between biotic disturbance agents and their hosts
in forested landscapes. For example, forest ecologists
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provide important insights into the spatio-temporal pat-
terns of biological disturbances in forest ecosystems.

The vast majority of modeling studies investigat-
ing forest insects have focused on their population
dynamics. These models include conceptual models
(e.g.,Holling, 1986), models based on life tables (e.g.,
Royama, 1984; Dale et al., 1991), and highly so-
phisticated time-series analysis designed to elucidate
the mechanisms driving insect population dynamics
(Turchin, 2003). Most of these population-based ap-
proaches do not consider spatial processes affecting
population dynamics in heterogeneous environments.
An exception is the use of reaction–diffusion models to
elucidate mechanisms underlying population viability
in heterogeneous environments (Flather and Bevers,
2002) and regional synchronicity (Bjornstad and
Bascompte, 2001; Bjornstad et al., 2002). Nonetheless,
the behavior of spatially explicit population models
is complex, even within homogeneous environments
(Kareiva and Wennergren, 1995).

Holling (1986, 1992)noted that the dynamics of in-
sect outbreaks are complex because they are controlled
by multiple constraints operating at vastly different
temporal and spatial scales. For example, endemic
spruce budworm populations are held in check by a
complex of natural enemies that can respond quickly to
minor fluctuations in budworm populations (Royama,
1984). During endemic periods, food resources for the
budworm slowly increase to a level that can sustain an
outbreak. Once the system has reached this threshold
state, a relatively minor event (e.g., weather conditions
or budworm immigration from neighboring forests) can
rapidly shift the control of budworm populations to
their food resource, and their population growth be-
comes exponential (Holling, 1986). While predicting
the triggering event or the specific year of an outbreak is
nearly impossible, predicting whether an outbreak will
occur within a larger temporal window (e.g., a decade)
becomes more feasible (Allen and Hoekstra, 1992).

Since forest succession is very slow relative to insect
population dynamics, the fine-scale temporal details of
pest populations are less important than the more gen-
eral temporal pattern of damage (i.e., mortality) that
they cause. Thus an alternative approach to simulat-
ing forest-pest interactions is to use the characteristic
patterns of biotic disturbance from the past to predict
their behavior in future landscapes. This is analogous
to using the statistical properties of past fire regimes to
ave quantified many of the local stand characteri
e.g., host abundance, age, stand structure, soil m
ure, etc.) that determine the relative vulnerability
tand to an outbreak should one occur (Batzer, 1969
ulf, 1985; Shore and Safranyik, 1992; Bergeron e

995; Chojnacky et al., 2000; Orwig et al., 2002). Inter-
ediate scale factors affecting forest vulnerability

ess understood, but expert opinion (e.g.,Wulf, 1985)
nd empirical evidence suggests that characterist

he surrounding landscape can also influence stand
erability to a given biotic disturbance (Cappuccino
t al., 1998; Radeloff et al., 2000). At the regiona
cale the regularity, periodicity, and synchronicity
nsect outbreaks have been well documented thr
erial survey programs (Erickson and Hastings, 197
acLean and MacKinnon, 1996) and dendrochrono
gy studies (Blais, 1983; Swetnam and Lynch, 199
ergeron, 2000). Collectively, these monitoring effor
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simulate interactions between fire disturbance and for-
est succession in future landscapes, an approach that
has been widely and productively applied in the past
(e.g.,Baker, 1992; He and Mladenoff, 1999). The idea
is not to accurately predict the dynamics of a given
site on the landscape, but rather to capture the essential
patterns of disturbances at landscape scales. This ap-
proach is consistent with the design and philosophy of
LANDIS, a landscape-scale forest succession and dis-
turbance simulator that trades mechanistic detail for the
ability to simulate large areas over long periods of time
(Mladenoff, this volume).

This paper provides a detailed description of a new
biological disturbance agent (BDA) module designed
to complement the LANDIS simulation framework.
The BDA module is designed to simulate tree mortal-
ity following major outbreaks of insects and/or disease,
where major outbreaks are defined as those significant
enough to influence forest succession, fire disturbance,
or harvest disturbance at landscape scales. The mod-
ule is flexible enough to accommodate several types of
destructive insect and disease species, and more than
one BDA can be simulated concurrently to examine
their interactions. For clarity, we focus our presenta-
tion of the module and its behavior using a case study
forest-pest – Eastern spruce budworm. For the initial
testing, we evaluate the relative influence and interac-
tions between the spatial pattern of the environment,
neighborhood effects, and tree species diversity on the
abundance, severity, and pattern of budworm-caused
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erance, fire tolerance, seed dispersal, ability to sprout
vegetatively, and longevity. The forest harvest mod-
ule of LANDIS simulates forest management distur-
bance using a suite of ranking algorithms that can
be related to specific management goals (Gustafson
et al., 2000). The model operates on a raster (grid)
map, where each cell contains information on the pres-
ence/absence of tree species and their 10-year age-
cohorts (species-age list), but not information about
the density or size of individual stems. Model input in-
cludes mapped land types/ecoregions, initial species-
age conditions, mapped stands and management ar-
eas, as well as parameters for species establishment,
fire characteristics, and fuel accumulation regimes for
each landtype/ecoregion. Several new improvements
to LANDIS, described in this paper and others in this
special issue (He et al., this volume; Shang et al., this
volume; Scheller and Mladenoff, this volume; Yang et
al., this volume) will be integrated into subsequent ver-
sions of the model.

2. Biological disturbance agent module

2.1. Overview

The temporal resolution for a given BDA is limited
by the time step of LANDIS, currently fixed at ten
years. Given this temporal resolution, only tree mor-
tality, rather than defoliation or infection, is simulated.
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.1. LANDIS overview

The purpose of LANDIS is to simulate the recip
al effects of disturbance processes and patterns o
st vegetation on each other across large (104–107 ha)

andscapes and long time scales (50–1000 years)
urrent version of LANDIS (v3.7) simulates diffe
ntial reproduction, dispersal, and succession pat
sing the vital attributes of species, and incorpor
ffects of natural disturbance (fire and wind) and
ironmental heterogeneity interacting spatially ac
he landscape (Mladenoff and He, 1999). Vital at-
ributes influencing forest succession include shad
iological disturbances are probabilistic at the
i.e., cell) scale, where each site is assigned a prob
ty value calledSite Vulnerability(SV), and compare
ith a uniform random number to determine whe

he site is disturbed or not. Disturbance causes spe
nd cohort-specific mortality in the cell. In the simp
ase, site vulnerability equalsSite Resource Dom
ance(SRD), a number that ranges from 0 (no sus

ible host) to 1 (most susceptible host) based on the
pecies and age-cohorts present in the site. Whil
resence of susceptible host is required for disturba

our other factors may also modify site vulnerabil
1) environmental and/or other disturbance-rel
tress (Site Resource Modifiers); (2) the abundanc
f host in the neighborhood surrounding the
Neighborhood Resource Dominance) (NRD); (3)
ser-defined temporal functions (e.g., cyclic, r
om, or chronic) that affect the temporal pattern
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Table 1
Host preference look-up table example using spruce budworm, where
the age range listed represents the ages at which the species exists
within the host preference class

Species Minor host
(min–max age)

Secondary host
(min–max age)

Primary host
(min–max age)

Balsam fir 0–10 20–40 50–120
Black spruce 0–40 50–200 999–999
White spruce 0–10 20–40 50–200

A value of 999 indicates that the species never reaches a given host
preference class, and species not listed (e.g., trembling aspen) are
considered non-hosts by default.

disturbances across the entire spatial domain of the
simulation (Regional Outbreak Status) (ROS); and (4)
spatial epidemic zones defined via simulated dispersal
of a BDA through a heterogeneous landscape (Disper-
sal). Any combination of the optional factors can be
simulated to capture the essential dynamics for a given
BDA; multiple BDAs can be simulated simultaneously
for a given landscape; and interactions between
BDAs may be simulated via disturbance-related
stress. This model description starts by describing
the simplest case (i.e., site-level resources), and then
builds further complexity into the module by adding
optional elements 1–3 above (dispersal algorithms
will be described in a forthcoming manuscript). A
flow diagram for the module is shown inFig. 1.

2.2. Site resource dominance

Site resource dominance indicates the relative quan-
tity/quality of food resources on a given site and is a
combined function of tree species composition and age-
cohorts present on that site. The relative food resources
provided by a given tree species in a particular age class
is defined by its host preference. Four host preference
classes are rank-ordered according to their relative re-
source value: primary, secondary, minor, and non-host.
A host preference parameter look-up table provides a
flexible method for defining the age range at which
a given species exists within a given host preference
c are
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et al., 1983). Since black spruce (P.mariana) is consid-
ered a secondary host (MacLean, 1980; Montgomery
et al., 1982), it never reaches primary host status (i.e.,
minimum primary host age > longevity).

SRD for a given site varies between 0 and 1, and rep-
resents the relative resource value of a site for the BDA.
The relative resource value of a given species cohort
is defined by its host preference class, where preferred
host = 1.0, secondary host = 0.66, minor host = 0.33,
and non-host = 0. While these rank-ordered host values
logically correspond with published host susceptibility
rankings for many forest pests (e.g.,MacLean, 1980;
Hall et al., 1998; Chojnacky et al., 2000), we caution
that disturbance probability is not necessarily a linear
function of host susceptibility. The BDA module
compares the look-up table with the species cohort list
generated by LANDIS to calculate SRD using one of
three methods: (1) the maximum host preference class
present, (2) an average resource value of all tree species
present, where the resource value of each species is
represented by the cohort with the maximum host pref-
erence, and (3) an average resource value for all tree
cohorts present. When the biomass option becomes
available in LANDIS (Scheller and Mladenoff, this
volume), a fourth option will use the biomass of each
tree species’ cohort to weight its relative resource value.

SRD is required to calculate a site’s vulnerability
that ultimately dictates the probability and severity of
biotic disturbance on a given site. Though other con-
tributing factors may be simulated, the simplest calcu-
l
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V = a × SRD (1)

herea is a user-defined calibration parameter. By
ault, a = 1. BDA disturbance events are determi
or each site by comparing SV with a uniform rand
umber ranging from 0 to 1.

Once a site is disturbed, the disturbance sever
alculated for the site to determine which species
orts die, based on their tolerance as a host. While

olerance (species susceptibility to BDA disturbanc
ypically related to related to its host preference (va
s a food resource), there are often differences bet

he two that are significant enough to warrant a new
f parameters. For example, all cohorts of a spe
ay be equally sensitive to a disturbance, even th
lder cohorts provide greater food resources.
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Fig. 1. Logical flow diagram for the biological disturbance agent module.

Disturbance intensity is a direct function of SV,
where SV < 0.33 = light; 0.33 < SV < 0.67 = mod-
erate; SV > 0.67 = severe disturbance. Cohort mortal-
ity follows the following rules: light disturbance kills
all vulnerable cohorts, moderate disturbance kills all

tolerant and vulnerable cohorts, and severe disturbance
kills resistant, tolerant, and vulnerable cohorts.

If no other BDA options are simulated, the BDA
module finishes by updating species cohort lists, up-
dating the time since last biological disturbance, out-
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putting a map of BDA disturbance events, and updating
the BDA log (Fig. 1).

This algorithm produces landscape patterns of tree
mortality with qualities desirable for simulating dis-
turbances by insects and disease. First, the probability
of disturbance is a direct function of host value and
susceptibility to the BDA (Fig. 2). The resulting dis-
turbance pattern is a logical extension of the stand-level
risk factors that are often well documented in the liter-
ature. Hence, disturbances are randomly distributed if
the host is randomly distributed, and (Fig. 2b) hierar-
chically distributed when the host is spatially clustered
(Fig. 2d). Second, there is no additional autocorrela-
tion in the disturbances other than that caused by spa-
tial autocorrelation of the host. This assumption is due
to the paucity of studies quantifying the spatial struc-
ture of mortality caused by insects and disease at land-
scape scales. However this assumption can be relaxed
if more information on the drivers of disturbance pat-
terns is known through the use of optional procedures
described below.

2.3. Site resource modifiers

Site resource modifiers are optional parameters used
to adjust SRD to reflect variation in the quality of
food resources introduced by both site environment
(i.e., land type) and recent disturbance. For exam-
ple, dry land types or ecoregions may be more prone
to a given BDA due to drought stress (Mattson and
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types of disturbances. To calculate the DM for a given
disturbancei:

if DM durationi > Ti,

DMi = DM Maxi × DM durationi − Ti

DM durationi
(2)

where DMMax is the maximum modifier for distur-
bancei, DM durationi is the maximum amount of time
a disturbancei can influence SRD, andTi, is the time
since the last disturbancei experienced on that site. We
assume that for those sites experiencing multiple recent
disturbances, the modification to SRD is equal to the
sum of all disturbance modifiers:

DMfinal = (DMdist1 + DMdist2 + . . . DMdistn) (3)

Disturbances that may affect a given BDA include fire,
wind, another BDA, and user-specified harvest pre-
scriptions. SRD is then modified by LTM and DMfinal:

SRDm = SRD+ LTM + DMfinal (4)

Site vulnerability is then calculated by substituting
SRDm for SRD in Eq. (1). Hence direct effects of
environment and recent disturbance on a given BDA
are assumed to be additive. Note that both land type
and disturbance may also affect the BDA indirectly by
modifying the tree species and age structure across the
landscape.

The user should calibrate the above modifiers to re-
flect the relative influence of species composition/age
structure, the abiotic environment, and recent distur-
bance. For example, an LTM value of 0.33 is equal to
a full step increase in disturbance intensity above that
calculated using species composition alone, and would
cause resistant hosts to respond as tolerant hosts and
tolerant hosts to respond as vulnerable hosts to a BDA
event in that land type. Note that whileEq. (4)allows
SRDm to exceed 1.0, by definition SV cannot exceed
1.0 (i.e., 100% probability of disturbance). SRDm val-
ues exceeding 1.0 can therefore only enhance the prob-
ability of disturbance further if additional variables,
such as neighborhoods or temporal disturbance func-
tions (described below) are applied.

2.4. Neighborhood resource dominance

Several recent studies suggest that the landscape
context of a site also influences the probability and
aack, 1987). The modifier need not be positive,
ome environmental conditions may either make h
ore resistant to a given BDA, or make the BDA

elf less likely to be present (e.g.,Van Arsel et al.
961). Similarly, recent disturbances such as d

iation or fire may weaken the surviving trees, a
aking them more prone to certain types of biol

cal disturbances (e.g.,Wallin and Raffa, 2001), and
thers (e.g., spray programs via human managem
ake them more resistant. Hence both land type m

fiers (LTMs) and disturbance modifiers (DMs) c
ange between−1 and +1, and will be added to t
RD value of all active sites where host species
resent.

While LTMs are assumed to be constant for the
ire simulation, the magnitude of a DM is assume
ecline linearly with the time since last disturban
nd SRD of a given site can be influenced by mult
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Fig. 2. Effect of host pattern on biotic disturbance. Site resource dominance patterns include hosts of differing susceptibility that are (a) randomly dispersed and (b) spatially
aggregated (red = primary host; yellow = secondary host; green = minor host; blue = non-host). If no neighborhood function is applied, then the disturbance pattern is directly related
to the spatial pattern of hosts (c and d; black = disturbed, white = not disturbed). If a neighborhood function is applied, disturbance response variesbetween an overall reduction of
159

disturbed sites when hosts are randomly dispersed (e) to a blending of habitat boundaries if hosts are spatially aggregated (f).
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severity of disturbance (Cappuccino et al., 1998;
Radeloff et al., 2000). The mechanisms for this “neigh-
borhood effect” are not well-understood, but may in-
clude (a) enhanced ability of a dispersing BDA to detect
host species when the host trees are embedded within
a matrix of host (Greenbank et al., 1980), or (b) re-
duced natural enemies within landscapes having a low
diversity of tree species (Cappuccino et al., 1998). A
neighborhood effect is modeled as the mean SRDm of
each cell within a user-defined radiusR, using one of
three radial distance weighting functions listed in in-
creasing order of local dominance: uniform, linear, and
gaussian (Orr, 1996). The linear radial distance func-
tion is calculated using the:

Weight= R − D

R
(5)

whereD is the distance from the focal site. The gaussian
radial distance function was adapted fromOrr (1996):

Weight= exp− D2

(R/2)2
(6)

Dividing the radius by 2 inEq. (6) assumes that the
radial distance function includes 2 standard deviations
of the distribution with a maximum radius ofR.

Neighborhood resource dominance is calculated for
all sites containing host species (i.e., SRD > 0). For
large neighborhoods (e.g., hundreds of cells), the NRD
calculation is computationally expensive, because the
SRD value for each cell in a site’s neighborhood must
b ther
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and
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anda is a user-defined calibration parameter defined in
Eq. (1).

Importantly, the landscape mean value of SV cal-
culated usingEq. (7) is generally lower than if the
neighborhood calculation is not applied (Sturtevant,
unpublished data). This effect is observed because sites
with low SV decrease the SV of their neighbors, but
their own probability of disturbance cannot increase
above zero unless the SV of their neighborhood is
greater than their threshold tolerance. The neighbor-
hood impact on landscape-level disturbance probabil-
ity is greatest when hosts and non-hosts are highly in-
terspersed (e.g.,Fig. 2c). As the spatial autocorrelation
of host increases, the landscape-level probability of dis-
turbance approaches that expected if no neighborhood
was applied, though the spatial pattern of disturbances
is modified (Fig. 2f).

2.5. Regional outbreak status

Several insect pests fluctuate fairly regularly in time,
causing periodic disturbance over broad spatial scales.
This type of regional synchronicity is most often ob-
served in highly vagile species such as Lepidopterans
(Kendeigh, 1979; Blais, 1983; Swetnam and Lynch,
1993). Several simple temporal patterns may be sim-
ulated in the BDA module to represent general out-
break trends for the entire study landscape. Temporal
patterns in a given BDA are assumed constant for the
length of the simulation, and are defined by a suite
o nd-
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e accessed and averaged with the SRD of all o
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eated for every site containing host. We have th

ore added an optional sub-sampling procedure b
n the observation that adjacent sites share a signi
ortion of neighbors. The sub-sampling procedure
ulates the NRD for every other site, and the NRD
he remaining sites are estimated by the mean NR
djacent sites in the four cardinal directions.

Site vulnerability can now reflect (a) the species
ge composition of the site (SRD), (b) modified by l

ype and past disturbance (SRDm), and (c) the specie
nd age composition of the neighborhood (NRD):

V = a ×
[

SRDm + (NRD × NW)

1 + NW

]
(7)

here NW is a parameter designed to define the rel
mportance between site and neighborhood resou
f temporal disturbance functions that define the la
cape scale severity of the BDA at a given time s
hese temporal disturbance functions can vary in c
lexity from a chronic BDA that occurs with the sa
everity each time step to cyclic or random tem
al patterns that can further vary in severity, and m
e parameterized from a variety of historical outbr
ecords.

We define the regional outbreak status as an est
f the severity of the regional outbreak, distinguis

rom disturbance severity at the local scale. Units
nteger classes ranging from 0 (no outbreak) to 3 (se
utbreak). The time to the next outbreak is calcul

ollowing each outbreak event using either a “unifor
r a “normal” random function. Two user-defined
ameters control each function. The uniform rand
unction assumes that the outbreak interval varies
ween a minimum (MinI) and maximum (MaxI) with
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Fig. 3. Examples of temporal patterns in regional outbreak status (ROS) simulated using different combinations of random functions and
available parameters. F = random function (uniform, normal), T = outbreak type (pulse, variable pulse), MinROS = minimum ROS, MaxROS =
maximum ROS. For F = “random”, MinI and MaxI equal the minimum and maximum outbreak interval, respectively. For F = “normal”,µ and
σ equal the mean and standard deviation in outbreak interval, respectively.

equal probability. The normal random function selects
the time to the next outbreak from a normal distribu-
tion with a mean =µ and standard deviation =σ. Either
of the random functions can be parameterized to pro-
duce chronic (i.e., outbreak every time step;Fig. 3a),
cyclic (i.e., evenly spaced outbreaks;Fig. 3b), pseudo-
cyclic (Fig. 3c), and random (Fig. 3d) outbreak pat-

terns. Though the actual time periods between out-
breaks will be constrained by the time step of LANDIS
(currently set at 10 years), the random outbreak func-
tions may be used to vary the outbreak interval such
that theaverageinterval between outbreaks observed
during the length of the simulation approximates that
expected by the user.



162 B.R. Sturtevant et al. / Ecological Modelling 180 (2004) 153–174

The magnitude of simulated regional outbreak
severities is controlled by the MinROS and MaxROS
parameters. MinROS defines the “background” out-
break activity that will occur in each time step, and is set
to zero by default. Outbreak type determines whether
outbreaks are binary (either MinROS or MaxROS; out-
break type = “pulse”;Fig. 3b–d) or if the ROS can range
between those values (outbreak type = “variable pulse”;
Fig. 3e–f). For the variable pulse outbreak type, the
ROS value is randomly selected for each outbreak event
from the range between MinROS + 1 and MaxROS. We
are currently developing a third outbreak type (“con-
tinuous”) that will interpolate ROS between outbreak
and non outbreak periods.

Site vulnerability can now reflect (a) the species and
age composition of the site, (b) modified by land type
and past disturbance (SRDm), (c) the species and age
composition of the neighborhood (NRD), and (d) the
regional outbreak status (ROS) during any given time
step.

SV = a ×
[

SRDm + (NRD × NW)

(1 + NW)

]
×

(
ROS

3

)
(8)

Since SV controls both the probability of disturbance
and the severity of a disturbance once it occurs, ROS
<3 will decrease both (a) the probability of disturbance
and (b) the severity of the disturbance for the entire
landscape.

2.6. Dispersal
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run-
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and 1 G RAM. Four factors were evaluated for their
effect on module performance: map size (5002, 10002,
and 20002 cells 1 ha in size), neighborhood radius (0,
500, 1000, and 2000 m), neighborhood option (normal
or sub-sampling procedure), and number of tree species
simulated (5, 10). Iteration time increased as a nearly
log-linear function of both map size and neighborhood
radius, with a maximum run time of 27 min per iter-
ation when the largest neighborhood was applied to
the largest map using the “normal” calculation. The
sub-sampling option significantly reduces run time by
42–49%, depending on the neighborhood radius. Dou-
bling the tree species number effectively doubled run
time for simulations without a neighborhood calcula-
tion, but had very little effect (<5%) on run time for
scenarios where neighborhoods were applied.

2.8. Application: spruce budworm disturbance

We tested the behavior and sensitivity of the BDA
module in simulated forest ecosystems affected by
Eastern spruce budworm. Neutral landscape patterns
ranging from random to multifractal maps with high
spatial autocorrelation were created using the pro-
gram RULE (Gardner, 1999) to represent different spa-
tial arrangements of three land types with equal area.
The three land types represented xeric, mesic, and hy-
dric environmental conditions, respectively. These land
types controlled the distribution and abundance of dif-
ferent host and non-host species through their relative
s pat-
t e. We
a d ef-
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The above disturbance modeling strategies al
ume spatial synchrony of the epidemic. Some
emics occur at spatial scales smaller than the
al simulation area of LANDIS. Accounting for BD
ispersal and spread will be necessary for these c
he dispersal procedures for the BDA module are
nder development and will be elaborated in a fu
ublication. Nonetheless, the objective of the BDA
ersal procedure will be to define smaller spatial zo
ithin the modeled landscape where insect disturb
an actually occur for a given time step (Fig. 1).

.7. Module performance

Module performance was evaluated using the
ing time for a single iteration of the BDA module o
ersonal computer with a 2.53 GHz Pentium IIII C
.

pecies establishment coefficients and the initial
ern of species and age classes on the landscap
lso evaluated how two other factors, neighborhoo

ects and tree species richness, affected budworm
urbance behavior.

Table 1shows the host preference parameters
he three simulated budworm host species: ba
r, black spruce, and white spruce (Batzer, 1969
acLean, 1980). All other species were assumed
e non-hosts. The “mean species” option (i.e., hos
ource value averaged across all tree species pr
as used to calculate site resource dominance.
ulnerability parameters were identical to host pre
nce, except that white spruce was parameterized

olerant host instead of a vulnerable host. This is b
n observations that, unlike fir, the older needle
pruce are rarely consumed by spruce budworm
herefore spruce in general are more resistant to



B.R. Sturtevant et al. / Ecological Modelling 180 (2004) 153–174 163

worm damage than are balsam fir (Montgomery et al.,
1982).

Simulations were simplified to focus on the behav-
ior of the budworm disturbance as affected by the three
variables of interest (i.e., land type pattern, neighbor-
hood influence, and species diversity). No other dis-
turbances were simulated, no land type modifiers were
applied, and the calibration parametera, (Eq. (1)) was
set to unity. A simple cyclic temporal pattern of dis-
turbance, using the “pulse” outbreak type and a 40-
year outbreak interval, was simulated using the param-
eters shown forFig. 3b. This pattern roughly corre-
sponds with the periodicity of spruce budworm in bo-
real ecosystems (Blais, 1983). The time since the last
regional outbreak was set at 20 years.

To evaluate the effect of tree species richness on bud-
worm disturbance behavior, we simulated two types of
systems, one representing a boreal, species-poor sys-
tem, and the other representing a subboreal, species-
rich system. The boreal system contained nine species
(Table 2) typical of Northwestern Ontario (Canada),
and the subboreal system contained the same nine
species plus an additional nine species typical of

Table 2
Species parameters used in the test simulations

Scientific name Lnga Mat Shd Fire EffD MaxD Species establishment coefficient

Xeric Mesic Hydric

Abies balsamea 120 25 5 1 30 160 0.25 0.5 0.05
Acer rubrum 150 10 3 1 100 200 0.25 0.25 0
A 1
B 2
B 2
F 1
L 1
P 2
P 3
P 2
P 4
P 3
P 2
P 2
P 1
Q 3
T 1
T 2

S narios ital attribute
p ies est )
S

Shd = distance,
M

mixed forests of Northern Minnesota, USA (Burns
and Honkala, 1990). Species attributes were interpreted
from the literature (Table 2: Burns and Honkala, 1990).
Species establishment coefficients were used to param-
eterize three land types (xeric, mesic, and hydric) rep-
resenting a moisture gradient (Table 2). Establishment
coefficients were estimated using presence/absence
patterns and successional pathways described byKotar
and Burger (2000)for three representative habitat types
of North Central Minnesota. To focus the comparison
on species diversity rather than climate, establishment
coefficients for boreal species were identical in both
boreal and subboreal systems.

Initial conditions for simulations were populated as
a function of land type. For each land type, one of
six communities were randomly assigned to a given
site, representing common or rare early successional
communities, common or rare mid-successional com-
munities, and common or rare late successional com-
munities, based on their current distribution in North
Central Minnesota (Table 3: Kotar and Burger, 2000).
For each land type, the three common communities
were randomly assigned in equal proportions to 90%
. saccharum 300 40 5
etula alleghaniensis 300 40 4
. papyrifera 120 30 2
raxinus nigra 150 20 2
arix larix 180 15 1
icea glauca 200 10 3
. mariana 200 30 3
inus banksiana 70 15 1
. resinosa 250 35 2
. strobus 400 15 3
opulus balsamifera 150 10 1
. tremuloides 90 15 1
runus penssylvanica 30 10 1
uercus rubra 250 25 3
huja occidentalis 350 30 4
ilia Americana 250 15 4

pecies in bold were used in both boreal and subboreal sce
arameters were adapted fromBurns and Honkala (1990), and spec
eeSection 2.2.

a Parameter abbreviations: Lng = longevity; Mat = Maturity;
axD = maximum seeding distance.
100 200 0 0.1 0
100 400 0 0.25 0
200 5000 0.05 0.5 0.05
100 200 0 0.05 0.05
50 200 0 0.05 0.25
30 200 0.25 0.05 0
80 200 0.25 0.05 0.25
50 250 0.75 0.05 0
12 275 0.50 0.05 0

100 250 0.50 0.1 0
200 5000 0 0.5 0
500 5000 0.05 0.75 0
30 3000 0.05 0.5 0
30 3000 0 0.25 0
45 60 0 0.25 0.05
30 120 0 0.1 0

, all others were used exclusively in subboreal scenarios. V
ablishment coefficients were estimated fromKotar and Burger (2000.

shade tolerance, Fire = fire tolerance, EffD = effective seeding
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Table 3
Initial conditions used for LANDIS simulations

Communities Aba Bp Ll Pg Pm Pb Pbalb Pt Pp Ar As Ba Fn Pr Ps Qr To Ta

Xeric
Early-com 20 20
Early-rare 10 10 10 10
Mid-com 10 20 20 50 20 50
Mid-rare 10 70 20 70 20 70
Late-com 60 60 80 120
Late-rare 80 100 150

Mesic
Early-com 10 10 10 10
Early-rare 20 20
Mid-com 10 70 20 70 70 30 10 10 70 50 10
Mid-rare 10 50 10 10 10
Late-com 60 60 100 60 100 60
Late-rare 80 100 80 100 120 100

Hydric
Early-com 20
Early-rare 20 20
Mid-com 70 30
Mid-rare 70 70 30 10
Late-com 100
Late-rare 50 100 50

Each of the three common (Com) community types were populated on 30% of the land type, and each of the three rare community types were
populated on 3.3% of the land type. Species in bold were simulated in both boreal and subboreal scenarios, species in plain text were only
simulated in subboreal scenarios. Initial conditions were based on current distributions in North Central Minnesota, USA (Kotar and Burger,
2000).

a First letter of genus and species shown inTable 2.
b Populus balsamifera.

of available sites, and the three rare communities were
randomly assigned in equal proportions to the remain-
ing 10% of sites.

The following response variables were used to
evaluate the behavior of the BDA module: (1) total
landscape-wide disturbance; (2) land type-level distur-
bance; and (3) the degree of spatial aggregation in bud-
worm disturbance patterns. The clumpiness index from
Fragstats (v 3.3) was used to describe aggregation on
a continuous scale from−1 to 1, where−1 = uniform
pattern, 0 = a random pattern, and 1 = amaximally
aggregated pattern. The clumpiness index equals the
proportional deviation of the proportion of like adja-
cencies from that expected under a spatially random
distribution (McGarigal et al., 2002). The temporal pat-
terns of tree species abundance were also evaluated to
determine whether the simulation results were com-
patible with successional pathways published in the
literature.

Responses to the three independent variables and
their interactions were evaluated using analysis of
variance (ANOVA) at the last outbreak, using a 3×
2 × 2 factorial design. Three replicate landscapes
with 512 by 512 one-hectare cells (total landscape
size ≈262,000 ha) were generated for each of three
land type patterns (random, multifractalH = 0.1,
multifractal H = 0.6; Gardner, 1999). Neighborhood
effects were evaluated using “no neighborhood”
and 1000 m neighborhood radius scenarios. Species
richness was evaluated using the boreal and subboreal
scenarios. Simulations were each run for 25 time steps
(250 simulation years).

3. Results

Each of the three factors examined (land type pat-
tern, tree species diversity, and neighborhood influ-
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Table 4
Analysis of variance of the response of the number of sites disturbed at simulation year 220 to the main effects,R2 =1.0

Source of variation df Type III SS F Prob >F

Land type pattern (ltp) 2 61268883 117.94 <0.0001
Neighborhood (n) 1 128890609 496.2 <0.0001
Species richness (r) 1 2889134167 11122.6 <0.0001
ltp × n 2 18325192 70.55 <0.0001
ltp × r 2 1950382 7.51 0.003
n× r 1 12952801 49.87 <0.0001
lta × n× r 2 757731 2.92 0.073
Error (e) 24 6234082

Total 35 3140547152

ence) had significant effects on the behavior of the sim-
ulated budworm disturbance. Tree species richness had
the strongest influence on the number of sites disturbed,
as indicated by the ANOVA applied to simulation re-
sults for simulation year 220 (Table 4). At the land
type-level, tree species richness had the most consis-
tent influence over disturbance within xeric and mesic
land types, where species-poor boreal scenarios expe-
rienced higher disturbance than species-rich subboreal
scenarios (Fig. 4). Since the species richness of the hy-
dric land type was similar between boreal and suboreal
scenarios (Table 3), that variable had less influence on
probability of disturbance in hydric land types (Fig. 4).

Neighborhood influence had the next strongest ef-
fect on the number of sites disturbed (Table 4). As ex-
pected, the application of the neighborhood reduced
the percentage of sites disturbed in all land types at the
first outbreak (simulation year 20) when tree species
distributions were similar (Fig. 4). However, the neigh-
borhood influence on the percentage of sites disturbed
in subsequent outbreaks was less consistent. For exam-
ple, a neighborhood influence caused wide oscillations
in the percentage of sites disturbed within hydric land
types, particularly within maps with aggregated land
type patterns (Fig. 4f and i). While ANOVA indicated
that land type pattern itself also had a significant influ-
ence on the percentage of sites disturbed at year 220, the
response was much smaller than for the other two vari-
ables (Table 4). This resulted partly because the propor-
tion of sites disturbed by a BDA could only be directly
a bor-
h the
t was
s hen
n

Landscape-scale host response to disturbance was
highly dependent on the mixture of species present,
which was a function of both the land type and the
forest ecosystem (boreal or subboreal) (Fig. 5). Bud-
worm disturbance promoted diversity of host species in
the xeric and mesic land types of boreal scenarios, and
the dominance of balsam fir in these same land types
in the subboreal scenarios. Disturbances in subboreal
landscapes were both less common and less severe, al-
lowing greater survival of balsam fir. This result was
due to our assumption that the average (as opposed
to maximum) host preference of species present on a
given site best reflects host resources on that site. Hence
the increased number of non-hosts simulated in the
subboreal scenarios decreased the landscape vulner-
ability to spruce budworm. Competition between non-
hosts and hosts also affected the relative abundance of
host species. For example sugar maple, a highly shade-
tolerant tree species, excluded all budworm hosts ex-
cept balsam fir within mesic land types of subboreal
scenarios (Fig. 5h and k).

Neighborhood influence on budworm disturbance
had a subtle positive influence on primary hosts in xeric
land types (Fig. 5d and j) and boreal mesic land types
(Fig. 5e). In contrast, neighborhood influence had a
negative influence on black spruce in hydric land types
(Fig. 5f and l). This negative influence is likely due to a
“spill-over” effect, where the host composition of adja-
cent land types increased the probability of disturbance
in this otherwise budworm resistant land type.

rom
a ap-
p VA
a sig-
n tion
ffected by spatial pattern of hosts when a neigh
ood effect was applied. This fact explains why

emporal behavior of the budworm disturbance
o similar between different land type patterns w
eighborhoods were not applied (Fig. 4).
The clumpiness index of disturbed sites ranged f
pproximately zero (random) to a maximum of
roximately 0.2, indicating some aggregation. ANO
pplied to the clumpiness index indicated highly
ificant main effects and interactions at simula
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Fig. 4. Temporal disturbance patterns in different land types within land types with increasing aggregation in the land type pattern. Points represent
disturbance events, whereas lines only indicate trends in disturbance events through time. Error bars representing one standard deviation of the
mean of three replicates were too small to display.

year 220 (Table 5). Interestingly, the pattern of dis-
turbances in boreal and subboreal landscapes relative
to random patterns was identical when no neighbor-
hood was applied (Fig. 6), despite large differences

in the numbers of sites disturbed in the different sce-
narios (Fig. 4). Random pattern of land types, and
presumably hosts, created a disturbance pattern that
was also approximately random (i.e., clumpiness in-
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Fig. 5. Temporal patterns of host species in young (10–40) and old (50+) age-cohorts in boreal and subboreal scenarios with no neighborhood
and a 1 km neighborhood applied. Only the moderately aggregated land type scenarios are shown, and non-host species are not displayed. YBF
and OBF are young and old balsam fir, respectively (dashed lines); YBS and OBS are young and old black spruce, respectively (black solid);
YWS and OWS are young and old white spruce, respectively (gray solid).
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Table 5
Analysis of variance of the response of disturbance clumpiness disturbed at simulation year 220 to the main effects, modelR2 = 0.98

Source of variation df Type III SS F Prob >F

Land type pattern (ltp) 2 0.0061 430.93 <0.0001
Neighborhood (n) 1 0.0009 132.18 <0.0001
Species richness (r) 1 0.0011 157.49 <0.0001
ltp × n 2 0.0006 42.75 <0.0001
ltp × r 2 0.0004 30.01 <0.0001
n× r 1 0.0012 151.27 <0.0001
lta × n× r 2 0.0002 17.00 <0.0001
Error (e) 24 0.0002

Total 35 0.0107

dex≈0; Fig. 6a). Increasing land type aggregation in-
creased the aggregation of disturbances, but the dis-
turbance pattern also fluctuated with time. The most
striking variation in disturbance aggregation was ob-
served when a neighborhood was applied to a boreal
landscape with highly aggregated land types (Fig. 6c,
Fig. 7). Since there is a negative feedback between dis-
turbance amount/severity and the survival of host, there
was some oscillation that occurred in each of the land
types, but most notably the hydric land type (Fig. 4i,
Fig. 7). This oscillation was a combined response to
the initial conditions (Table 3) and differing establish-
ment coefficients in each of the land types that created
host age class distributions that were not synchronized
across the land types. Disturbances therefore became
clustered in certain land types during different distur-
bance events (Fig. 7). The oscillation dampened with
time as the dispersion of disturbances became closer to
random.

4. Discussion

The BDA module was designed to simulate the
essential spatio-temporal patterns of tree mortality
caused by biological disturbance agents that include
both insects and disease. Consistent with the design of
LANDIS, the module trades mechanistic detail (i.e.,
the details of site-specific BDA population dynamics)
for the ability to simulate pattern across broad areas
a he
a tur-
b t in-
t tur-
b val-

uate the sensitivity of module behavior to different
assumptions and ecological settings. The simulations
presented in this paper demonstrate that the module
is capable of producing realistic spatio-temporal pat-
terns of spruce budworm disturbances on the landscape.
We believe that this approach will have wide appli-
cability to a diverse array of destructive forest pests,
but also recognize that no one approach can model
the rich diversity of biological disturbances in forested
ecosystems.

The most important factor controlling the probabil-
ity of disturbance in the simulations was the species and
age composition in the landscape. This result is a di-
rect consequence of the assumption that site resources
are best approximated by the average host preference
on a site. Mixed stands generally experience less dam-
age than pure stands of host in forests disturbed by
spruce budworm (MacLean, 1980), suggesting that the
average host value of tree species in a given site is
an appropriate method for quantifying the total value
of the site to spruce budworm. In the boreal scenar-
ios, budworm disturbance promoted species richness
(Fig. 5a and b).Van der Kamp (1991)suggested that
forest pathogens perform a similar role in many forest
communities by preventing the dominance of shade-
tolerant species. However, balsam fir still dominated
the host composition of subboreal landscapes in land-
types where it had high establishment (Fig. 5g and h).
This result is consistent with the ubiquity of balsam fir
in subboreal landscapes of Northern Minnesota (Kotar
a aks
o t
t po-
s tion
f on-
nd long periods of time (Mladenoff this issue). T
pplication of the module to spruce budworm dis
ance in subboreal and boreal systems was no

ended to precisely match the specifics of the dis
ance behavior of spruce budworm, but rather to e
nd Burger, 2000) despite repeated budworm outbre
ver the last 40 years.Ghent et al., (1957)found tha
he influence of budworm disturbance on stand com
ition was sensitive to the survival of fir regenera
ollowing an outbreak. Previous simulations dem
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Fig. 6. “Clumpiness” of disturbed sites in landscapes with different land type patterns, where−1 = uniform pattern, 0 = arandom pattern, and
1 = a maximally aggregated pattern (McGarigal et al., 2002). Clumpiness values for boreal scenarios were identical to subboreal scenarios, and
are not shown. Points represent disturbance events, whereas lines only indicate trends in disturbance events through time. Error bars represent
one standard deviation of the mean of three replicates. Note that the clumpiness index for boreal and subboreal without neighborhoods were
nearly identical, therefore boreal no neighborhood symbols cannot be seen in any of the graphs.

strated that the relative amount of balsam fir that per-
sisted in the landscape was sensitive to the vulnerabil-
ity class of the youngest age cohort (Sturtevant, un-
published data). These results indicate that LANDIS is
producing realistic succession dynamics in response to
budworm disturbances. Combined fire and budworm
disturbance regimes will be required to fully capture

actual successional dynamics of most boreal and sub-
boreal systems (Bergeron, 2000).

Neighborhood effects on stand vulnerability have
only recently been quantified in budworm disturbances
(Cappuccino et al., 1998; Radeloff et al., 2000). Sim-
ulations in this study suggest that neighborhood influ-
ence has some interesting implications for the spatio-
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Fig. 7. Comparisons of the spatial patterns of disturbance severity for a landscape with a highly aggregated land type pattern when no neighbor-
hood is applied (a–c, g–i) vs. a disturbance severity using a 1 km neighborhood (d–f, j–l). Red cells represent high severity disturbance, green
cells represent moderate severity disturbance, and blue cells represent low severity disturbance.
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temporal patterns of biological disturbances. First, the
mean resource value of a landscape was reduced by the
presence of non-host sites, particularly if the sites are
highly interspersed (Fig. 2). This result is consistent
with a long-standing but hotly debated “silvicultural
hypothesis” of spruce budworm disturbance, which
suggests that the homogenization of forests caused by
logging practices has increased the amount and sever-
ity of budworm disturbance throughout much of boreal
Canada (Miller and Rusnock, 1993). Other implica-
tions of the neighborhood are more subtle. For example,
while reduced resource values resulted in lower land-
scape vulnerability to a given outbreak, lower distur-
bance rates enhanced the survival of host to be disturbed
at the next outbreak (Fig. 4). Neighborhood influ-
ence typically homogenizes disturbance severity across
heterogeneous landscapes (Fig. 7). Yet feedback be-
tween host survival and environmentally induced spa-
tial patterns in host distribution can also create complex
spatio-temporal patterns of mortality across the land-
scape (Figs. 4 and 7). While the silvicultural hypothesis
is still unresolved (Miller and Rusnock, 1993), better
understanding of the interactions between host pattern
and disturbance at the landscape scale may help clar-
ify the conditions under which forest management can
affect landscape vulnerability to spruce budworm and
other forest-pest species (Lewis and Lindgren, 2000).

In sharp contrast with fire disturbance ecology, char-
acteristic spatial patterns of biological disturbances are
not well-understood, particularly at large spatial scales
( )
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cal gap caused by a mature tree. This approach would
likely result in a random pattern of tree mortality that
might better represent reality, but the increased reso-
lution would also drastically reduce the performance
of the model and the ability to simulate large land-
scapes. Alternatively, we might implement “partial”
mortality caused by budworm within a given cell. Fu-
ture developments in LANDIS will allow such partial
disturbances through the use of the new biomass mod-
ule (Scheller and Mladenoff, this volume). At broader
spatial scales, the spatial structure of host did cause
some spatial aggregation in disturbance patterns, and
this aggregation was enhanced when a neighborhood
was used to calculate the resource dominance of the
site (Fig. 6). However, strong spatial aggregation in
disturbances will likely require spatial constraints on
the behavior of the BDA, such as dispersal limitation.

Biological disturbance agents with limited disper-
sal ability will require simulation of dispersal to cor-
rectly simulate their spatial dynamics. These dispersal-
limited BDAs include many important forest pathogens
such as Armillaria root disease (Armillaria spp.)
(Lundquist, 1993) and parasites such as mistletoe
(Lavorel et al., 1999). Dispersal of insects or disease
may be modeled as a percolation process within a ras-
terized map with different habitat types (Turner et al.,
1989), or as focus expansion models (Zadoks and van
den Bosch, 1994). Development of generalized spread
algorithms is underway for the BDA module, but be-
yond the scope of this paper.
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om spatial distribution (Fig. 6). However, the resolu

ion of the simulated sites was coarser than the scal
ypical tree gap. There are two alternative approa
hat could be used to more realistically capture fi
cale disturbance caused by insects. The cell-size
e reduced to better approximate the size of a
The regional outbreak functions used in this B
odule are gross simplifications of population
amics. However, there are data sources avai

hat can parameterize such simple functions.
mples for spruce budworm include dendrochro
gy studies (Blais, 1983; Swetnam and Lynch, 19
ergeron, 2000) and long-term aerial monitoring e

orts (Erickson and Hastings, 1978; MacLean
acKinnon, 1996). While the two temporal function

urrently used in the module can be parameter
o simulate a wide array of historic disturbance
erns (e.g.,Fig. 3), the categorical design of the
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dence. Future work in the module will investigate dif-
ferent population-based alternatives to the simplified
temporal functions described here.

Another limitation in our design is that disturbances
events are partially uncoupled from the host resource.
For example, while disturbances occur in proportion to
the availability of host, the host condition of the land-
scape has no influence over the temporal frequency or
regularity of the disturbance events. Some forest pests,
such as bark beetles, exhibit threshold population dy-
namics where some minimum levels of susceptibility
must be met before an epidemic can take place (Rykiel
et al., 1988). The BDA module will likely require mod-
ification before it can adequately simulate such distur-
bances. Still, our approach does have value because we
can investigate the implications of a given biological
disturbance regime on the spatio-temporal patterns of
forest succession at large temporal and spatial scales.

In fire ecology, a wide range of approaches has been
used to simulate interactions between fire and forests,
where the selection of the modeling approach is de-
pendent on the relevant spatial and temporal scales in-
vestigated (Gardner et al., 1999). Similarly, this pa-
per demonstrates that the BDA module is useful for
investigating the landscape-scale spatio-temporal dy-
namics of a regionally synchronized defoliator, whose
outbreaks are relatively cyclical. The module design is
flexible enough to accommodate a wide array of BDA
life history traits, but its utility for simulating other
BDA types remains to be seen. While future work might
c rn-
b ed by
i ly to
b , de-
t but
s po-
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simulation output. Yves Jardon provided constructive
criticism that improved the temporal functions used in
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