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Abstract

This paper describes the development and application of a spatially explicit, individual based model of animal dispersal (J-walk)
to determine the relative effects of landscape heterogeneity, prey availability, predation risk, and the energy requirements and
behavior of dispersing organisms on dispersal success. Significant unknowns exist for the simulation of complex movement
behavior within heterogeneous landscapes. Therefore, initial simulations with J-walk examined the relative effect of landscape
patterns and species-specific characteristics on dispersal success. Differences in landscape pattern were simulated by random
generation of fractal maps with average available energy (i.e. prey) and predation risk expressed as a function of habitat type.
Variation in species-specific patterns were then simulated by a series of scenarios that varied the response of dispersing individuals
to habitat heterogeneity, including: habitat selection to maximize energy intake, habitat selection to minimize predation risk,
or habitat selection contingent on energy reserves. Results showed that significant shifts in dispersal could be related to (1)
the unique spatial arrangement of habitat within each map, (2) changes in relative prey abundance, and (3) variation in the
relationship between energy availability and predation risk. Hypothetical management scenarios were used to identify critical
data needed to assure the persistence of reintroduced populations of American martens (Martes americana).
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Dispersal is a critical process linking fragmented
populations within heterogeneous landscapes (Fahrig
and Merriam, 1985; Gustafson and Gardner, 1996;
Schippers et al., 1996). Because dispersal connects
populations that may be isolated by land-use change or
habitat destruction (Bascompte and Rodriguez-Trelles,
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1998; Lande, 1987; Lande et al., 1999; Peacock and
Smith, 1997), the probability of metapopulation ex-
tinction may be significantly reduced by dispersal
(Brown and Kodric-Brown, 1977). However, the un-
knowns associated with species-specific patterns of
dispersal and the effects of landscape pattern on dis-
persal success make conservation and management
recommendations (e.g. development of dispersal cor-
ridors) quite uncertain. The importance of these top-
ics is well recognized with the relationship between
dispersal and conservation design an active area of re-
search (Banks, 1997; Bender et al., 1998; Collingham
and Huntley, 2000; Dunning et al., 1995a).
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Although many studies of animal movement have
been performed, much remains to be learned concern-
ing landscape effects on dispersal success. A case in
point is the American marten (Martes americana),
which was extirpated from its former range in the
north-central US in the early 1900s (Davis, 1983).
Martens were successfully reintroduced into the Nico-
let National Forest, Wisconsin, USA between 1975
and 1983 following the release of 172 animals. Sub-
sequently, 85–90% of the released individuals were
located within 19 km of their release sites (Bruce
Kohn, personal communication). By 1994 the primary
marten range was estimated to cover 775 km2, with
an additional 580 km2 of peripheral range (James
Ashenbrenner, personal communication). Although
marten population densities in release areas within
the Nicolet are thought to be increasing (John Wright,
personal communication), the rate of range expansion
has been<13 km per decade. Similar rates (8–16 km
per decade) have been reported for marten refugia in
Ontario (de Vos, 1951).

Understanding the reasons for these low rates of
expansion may provide important insight into the dy-
namics of other reintroduced mammalian species. In
the Nicolet case low expansion rates may be the result
of spatial variability in required resources, existence
of landscape barriers created by unsuitable habitat, or
by the avoidance of areas occupied by potential com-
petitors and predators such as the con-generic fisher,
Martes pennanti(Krohn et al., 1995, 1997). If dis-
persal limitations for marten populations are related
to habitat conditions then the spatial arrangement of
habitat on the landscape may be a critical factor that
must be understood to explain the population dynam-
ics of these reintroduced species. Although dispersal
is a common phenomenon in most mammalian species
(Gaines and McClenaghan, 1980), successful disper-
sal is a relatively rare event that is difficult to ob-
serve, especially when population numbers are small.
Telemetry of mobile organisms has been success-
ful for describing movement and migration patterns
of a variety of species (Baker, 1999; Gautestad and
Mysterud, 1993; Siniff and Jessen, 1969) and teleme-
try studies of American martens have been performed
in the Nicolet National Forest (Davis, 1983; Gilbert
et al., 1997; Wright, 1999). However, these data have
not provided adequate monitoring of the dispersal of
juvenile individuals.

In spite of these unknowns and uncertainties—or
perhaps because of them—a variety of simulation
models has been developed to quantify the dispersal
process within mammalian populations. Perhaps the
simplest approach has been to ignore spatial effects by
modeling movement as either a diffusive process (e.g.
Andow et al., 1990; Okubo, 1980) or as simple trans-
fer functions (e.g.Fahrig and Merriam, 1985; Murray,
1967). Although these models provide a synoptic pic-
ture of landscape dynamics without the need to con-
sider the details of individual dispersal events—and
the simplicity of these models allows analytical solu-
tions to be developed (i.e.Waser, 1985)—they are not
useful when populations are highly fragmented and
dispersal success is affected by landscape patterns.

Individually based, spatially explicit models are
often preferred when landscape effects dominate dis-
persal results (e.g.Dunning et al., 1995b; Greene
and Johnson, 1992; Gustafson and Gardner, 1996;
McCarthy, 1997; Wiegand et al., 1999; Schneider,
1997). Two broad categories of spatially explicit
models may be identified: Those using vector-based
algorithms to simulate movement as a correlated ran-
dom walk (Kareiva, 1983; Lima et al., 1999; Marsh
and Jones, 1988); and models using grid-based rep-
resentations of landscapes to simulate the interaction
of dispersing individuals with the landscape matrix
(Allen et al., 1993; Gustafson and Gardner, 1996;
Wiegand et al., 1999). The former category has been
frequently used for organisms, such as insects, which
do not continuously interact with the landscape while
dispersing. The grid-based approach has been used
to simulate species that move shorter distances per
unit time and interact more strongly with landscape
features (e.g. vertebrates and small mammals).

The objective of this paper is to present an
individual-based, spatially explicit model of small
mammal dispersal within heterogeneous landscapes.
Our model, J-walk, considers the effects of spatial
variability in habitat, variability in available energy
(prey), and spatial variation in predation risk. In addi-
tion, J-walk allows a spectrum of individual dispersal
strategies to be simulated with movement patterns af-
fected by the activity level and physiological status of
the dispersing individual. Because sufficient empirical
information is not available for most small mammal
species, J-walk was designed to evaluate the effect of
alternative model assumptions on prediction results.
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This paper describes the methods used in J-walk and
examines the sensitivity of model results to variation
in model inputs and parameters. A series of sim-
ulation experiments are then presented to identify
those factors most important in determining dispersal
success. Finally, simulations based on the American
marten are performed to illustrate the potential of this
model for management and conservation purposes.

2. Methods

2.1. Model description

2.1.1. Model overview
J-walk is a general model for simulating dispersal

of a variety of vertebrate species. The following exam-
ples, and discussion of management and conservation
implications, are illustrated by developing parameter
values based on the dispersal of juvenile female Amer-
ican martens from their natal site to new, unoccupied
home ranges. Simulations were initialized in J-walk by
reading in a rectangular grid-cell habitat map and set-
ting parameter variables that specified a particular dis-
persal scenario (Table 1). Program options allow actual
landscape maps to be input or artificial landscapes to
be generated. Habitat map values (sequential integers
from 1 ton) were used as indices defining habitat qual-
ity, energy availability and predation risk. An ancillary
map identified the location of suitable home range
habitat for dispersing individuals. J-walk sequen-
tially releases individuals from the center of the map,
recording successful dispersal when the dispersing in-
dividual reached a new home range area. Interactions
between dispersing individuals were not simulated
in J-walk.

J-walk was written in Fortran 95 and compiled for
Pentium processors running under either MS-DOS©

or LINUX. Simulation of 10,000 dispersers on a
1024×1024 cell grid took between 30 min and 4 h on
a 233 MHz processor. Processing time depends pri-
marily on predation rates, with lower predation rates
increasing the number of steps a disperser is likely to
take.

2.1.2. Time step and movement rules
Two nested loops govern the simulated time in

J-walk. The outer loop defines the number of active

hours per day,A, and the inner loop defines the maxi-
mum number of steps per hour,L. Together they deter-
mine the total number of map sites that an individual
could potentially visit in a single day. The grain size
of our maps was 100 m (area= 1 ha) with the default
values forA andL (16 and 10, respectively;Table 1).
Values forA andL were estimated from the maximum
movement speed of 1 km/h for dispersing martens
and set the maximum possible distance moved per
day to 100 m× 16 h× 10 h−1 = 16,000 m. Although
this distance was large, it was consistent with mea-
sured movement rates:Davis (1983)found that 18%
of daily movements of radio-collared martens in
northern Wisconsin exceeded 3.2 km/day, with the
longest movement being 22 km; andMarshall (1951)
documented daily movements up to 14.5 km in Idaho.

The algorithm used to generate movement is tech-
nically defined as a directionally biased, first-order
correlated random walk (BCRW). Models employ-
ing simple correlated random walk (CRW), which as-
sume independence of parameters describing distance
moved and turning angle, have been shown to be
adequate descriptors of movement for many species
(Andow et al., 1990; Kareiva, 1983). However, be-
cause CRW are individual-based models of diffusive
movement (Okubo, 1980; Turchin, 1998), and do not
usually consider fine-grained variability in landscape
attributes, they are not effective descriptions of organ-
isms that perceive landscape structure and have com-
plex strategies for foraging and dispersal (Dunning
et al., 1992; Greene and Johnson, 1992). Therefore,
we included in J-walk a more complex movement al-
gorithm which consists of a four step sequence: (1)
selection of the preferred direction of movement; (2)
calculation at each movement step of a random angle
which deflects the direction of movement; (3) calcu-
lation of the probability of movement into each adja-
cent cell by the habitat characteristics of those cells;
and (4) the random choice of cell-to-cell movements
based on these adjusted probabilities. The details of
these steps are:

Step 1: Individuals were released from the center
of the map with the initial movement direction,d,
randomly determined from 1 of 8 cardinal directions.
These cardinal directions correspond to the loca-
tions of the 8 neighboring cells (numbered clockwise
with the northern neighbor: 1 to the north-western
neighbor: 8).
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Table 1
Model parameters and control variables

Parameter or variable Nominal value Range of values tested

Movement control
L, maximum number of steps taken per hour 10 Constant
A, number of active hours per day 16 12, 16, 18
B, vector of bias terms affecting probabilities of movementa (See text) Constant
M, vector of probability of movement to 8 adjacent neighbors (See text) Dynamic
C, standard deviation of change in turning angle 0.6 0.4, 0.6, 0.8
J, movement decision rules:e: maximize energy;m: minimize predation;

c: conditional between energy gain and mortality
e e, m, c

Energy and mortality
S, number of days for starvation 5.0 2.0, 5.0, 7.0
P, range of probabilities of predation 0.00001–0.0001 Constant
E, vector of mean energy availability for each habitat type 5.0 Constant
F, energy reserve of dispersers 0.0–1.0 Dynamic
G, energy gain per unit time G = 1.0/AL Dynamic
R, rate of energy loss per unit time G = Ei/AL Dynamic
N, net energy gain G − R Dynamic
Q, relative energy availability E/S (See text)
Y, Predation ruleb d a, b, c, d, e, f

Landscape descriptors
Map dimensions (number of rows and columns) 1024× 1024 Constant
H, map roughness parameter for generating fractal landscapes 0.5 0.1, 0.5, 0.9
k, number of levels of the midpoint displacement algorithm 10 Constant
n, number of habitat types 10 Constant
t, the vector relating habitat types to probability of movement (See text) Constant
Number of core range areas per map 8 Constant

Program control values
Random number seed −18798645 na
Number of individuals simulated 10000 Constant
Maximum number of days for simulating dispersal 90 Constant
Visualization (yes, no) Yes, no na
Output map of habitat sites visited by dispersing individuals Yes, no na

a Bias terms are a set of weights which increase the probability of movement in the selected direction. See text for values.
b Predation function choices (Y) are: a, linear increase;b, quadratic increase;c, exponential increase;d, linear decrease;e, quadratic

decrease;f, exponential decrease (seeFig. 1).

Step 2: At each subsequent time step the movement
direction,d, was deflected by a random angle selected
from a normal distribution with mean: 0.0 and stan-
dard deviation,C, of either 0.4, 0.6 or 0.8. The units
for C are the ordinal values of the 8 cardinal direc-
tions and correspond to 18, 27 and 36◦, respectively.
A deflection must be as large as±1 (±45◦) to shift
the direction by 1 neighbor,±2 (±90◦) to shift direc-
tions by 2 neighbors, etc. The probability of a 1 neigh-
bor shift is approximately 0.01 whenC = 0.4; 0.1
whenC = 0.6; and 0.21 whenC = 0.8. A deflection
as large as±2 neighbors never occurred whenC =
0.4, occurred with probability<0.01 whenC = 0.6

and occurred with probability 0.01 whenC = 0.8. A
movement deflection by as much as±3 neighbors in
a single time step is vanishingly small for all values
of C used in these simulations. The random angle was
added tod, with the modified value ofd used (step 4)
to bias the probability of movement,M.

Step 3: The values ofMi are determined by the
movement decision rule (J, Table 1), the current energy
reserves (F) of the marten (Table 1), and the surround-
ing habitat types. Each rule evaluates the available
energy (Ei) and the probability of predation (Pi) as-
sociated with the habitat types of the 8 neighboring
cells (i) (values ofEi andPi were determined on input
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from the relative habitat suitability indicest, Table 1).
For instance, the “energy maximization” rule (J = e,
Table 1) produces probabilities that are a linear func-
tion of available energy with predation effects set to
0.0 (i.e. predation risk is ignored). Thus, whenJ = e,
Mi = Ei. Conversely, the “predation minimization”
rule (J = m, Table 1) produces probabilities of move-
ment as an inverse linear function of the probability of
predation with potential energy gain or loss ignored.
Thus, whenJ = m,Mi = 1.0−Pi. The “conditional”
rule (J = c, Table 1) produces probabilities of move-
ment that vary with the current energy reserves (F) of
the marten, which may range from a minimum of 0.0
(starvation) to maximum of 1.0 (satiated). As energy
reserves decline, the weight for the energy terms in-
crease, such thatMi = (1.0 − F)Ei + (1.0 − Pi). For
all three rules,F was also used to determine if the in-
dividual remains on the current site and continues to
forage. It is assumed that individual will not move if
F < 0.5 andEi is >1.0 (i.e. the animal is hungry and
the available energy is in excess of metabolic require-
ments), but would move to another cell whenF > 0.5.
This feature causes movement patterns to vary with
the physiological state of the dispersing individual.

Step 4: The probabilities of movement,Mi, to the 8
adjacent sites were then multiplied by the appropriate
bias terms,bi. The initial values ofb (assumingd = 1)
were: 2.0, 1.7, 1.0, 0.29, 0.1, 0.29, 1.0, and 1.7. The
current value ofd sets the degree of rotation of this
vector so that the maximum bias term is always asso-
ciated with the current direction of movement. The fi-
nal probability of movement is the product ofMi×bi,
normalized so that the sum equals 1.0. Movement was
then determined by comparing a uniform random num-
ber to this final probability. Although there is a finite
possibility of a dispersing individual to move to any
adjacent cell, the small, independent random deflec-
tions ind produce a time-dependent correlated pattern
typical of dispersing organisms (Turchin, 1998). Steps
2 and 3 are repeated for each time step producing a
pattern of movement that seems realistic but, because
sufficient data are not available, cannot be empirically
verified.

2.1.3. Energy levels, starvation and predation
Rather than measure energy availability and con-

sumption in absolute terms, we measured energy rel-
ative to the specified metabolic rate (all parameters

used here are estimated for the American marten).
Metabolic rate is estimated from the number of days
(S) it takes an individual to starve with no energy
intake. The energy lost per day is equal 1.0/S, and
the rate of energy lost per unit of time,R, is equal
(1/S)[1/(AL)] = 1/(SAL). Thus, the rate of energy
loss increases asA (the number of hours active per
day) andL (the number of steps per hour) decrease,
but total energy loss remains constant on a per day
basis no matter what the values ofA or L may be.

The mean energy available to a foraging individ-
ual is specified by the vectorE, which varies by habi-
tat type. For the simulations reported here, the energy
available to a forager within habitat typei, Ei, was cal-
culated by assuming that the ordinal values of habitat
types represent a linear ranking of energy availabil-
ity. Thus,Ei = E(i− 1)/n, wheren is the number of
habitat types. Thus, habitat type 1 supplies no energy
(e.g. water bodies), causing martens to always avoid
these habitats, while habitat typei = n has maximal
available energy. IfE = S, that is, the ratio ofE to S
(i.e. Q, the Energy Availability Ratio) equals 1.0, and
all habitat types are equally abundant, the energy re-
quirements of individuals will be met or exceeded on
exactly 1/2 of the landscape. Energy gain per unit time
(G) for a forager in habitat typei is G = Ei/(AL).
Net energy gain (N) was calculated at each time step
byN = G−R. Net energy gain was added to the cur-
rent energy reserve (F) of the dispersing individual at
each time step. Starvation occurs wheneverF = 0.0.
Energy gain by foraging individuals does not change
the amount of energy available in that cell.

Dispersing individuals are often highly susceptible
to predation (Garrett and Franklin, 1988; Sakai and
Noon, 1997). However, the type of predator (i.e. avian
or mammalian) is often spatially variable with pres-
ence/abundance levels uncertain. Therefore, six func-
tions were developed to represent these uncertainties
by assigning predation probabilities (Pi) to each habi-
tat type (Fig. 1): three functions positively associated
predation risk with energy availability and three neg-
atively associated predation risk with energy avail-
ability. Positive relationships describe scenarios where
habitats with easily exploited prey also provide good
habitat for predators. Negative relationships describe
situations where habitat that lacks sufficient prey also
provides good protection for predators. Mortality was
randomly determined at each time step by comparing
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Fig. 1. Comparison of the six alternative predation rules showing the direction and rate of change in predation as a function of the energy
availability of each habitat type.

a uniform random deviate to the probability of pre-
dation (Pi) associated with the habitat type (i) of the
current cell.

2.1.4. Recording outcome of dispersal
The simulation of dispersal was terminated when

any one of five conditions occurred: (1) the dispersing
individual successfully reached a new home range
area (described below), (2) the dispersing individ-
ual starved (F = 0.0), (3) the dispersing individual
was killed by predation, (4) the dispersing individual
reached the edge of the map without locating a new
home range, or (5) the time limit set by the model
(90 simulated days) was exceeded. For each of these
conditions the model recorded: (1) the average energy
values (Ei) and predation risk (Pi) of cells visited, (2)
the energy reserve (F) of the dispersing individual,
(3) the number of simulated days before the individ-
ual met its fate, and (4) the habitat type of starvation
or predation events. For all individuals (regardless of
fate) the model recorded the average distance moved
per day by calculation of the straight-line distance
between the disperser’s location at the start and end
of each day. J-walk has the capability of simulating
the release and dispersal between any combination of
home range areas, although results reported here only
concern release from the center of the map. During

simulation, the path taken by a dispersing individual
was displayed on the habitat map, and the current en-
ergy reserve (F) was graphically updated at each time
step. J-walk also produced a map of the cumulative
number of times each cell was visited by successfully
dispersing individuals, which allows visualization of
how dispersers have interacted with the landscape.

2.2. Generation of artificial landscapes

The use of artificial landscapes allows the effect of
landscape heterogeneity on the pattern of movement
and dispersal success to be systematically explored
(Dale and Gardner, 1987; With et al., 1997). Each grid-
ded habitat map was generated by RULE (Gardner,
1999) with 1024 rows and columns (1,048,576 total
grid sites). Grid sites were assumed to be 100 m on
a side (area= 1 ha each) giving a total map area of
10,486 km2. Each map was composed of 10 habitat
types of equal area (1048.6 km2). Habitat type 1 was
assumed to be poor habitat, while type 10 was as-
sumed to be excellent habitat. The ordinal values of
the remaining habitat types were regarded as a linear
ranking of habitat quality.

Fractal maps were generated by RULE by the mid-
point displacement algorithm (Saupe, 1988), which
created a map of real numbers by iterative interpo-
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lation to locate the midpoint of a line, perturbation
of the midpoint by a Gaussian random value (GRV),
and successive reductions of the variance of the GRV.
Three parameters are used by RULE to control the
generation of fractal maps: (1)k, the “number of
levels” or iterations of the midpoint displacement al-
gorithm (the size of the map is always equal to 2k ); (2)
H, the parameter which controls the rate of reduction
of the GRV in successive iterations of the midpoint
displacement method; and (3) the number,m, and
proportion,pi, of habitat types. For further details re-
garding the use of fractal maps see Plotnick and Gard-
ner (Plotnick, 1993), Pearson and Gardner (1997)and
With et al. (1997). RULE may be downloaded from
http://www.al.umces.edu/faculty/bobgardner.html.

Maps used for these simulations were generated by
settingk = 10, H = 0.1, 0.5, or 0.9, andm = 10
with p1 . . . p10 = 0.1. The value ofH affects the
autocorrelation of adjacent habitat types. RULE sets
the variance of the GRV to 1.0, making the variance
between grid points separated by distancex approx-
imately equal tox2H . WhenH > 0.5 the landscape
appears quite smooth because the habitat types of ad-
jacent map sites are positively correlated, resulting in
large, contiguous habitat areas. WhenH < 0.5 the
map sites are negatively correlated, and the landscapes
appear rough and irregular. If the same random num-
ber seed is used to generate maps with different values
of H, then the key difference between maps will be
the degree of correlation, or roughness, between adja-
cent habitat types (Fig. 2). We have taken advantage
of this property by generating maps in triplicate by
selecting a unique random number seed and then set-

Fig. 2. Illustration of a single iteration of the three types of fractal
maps used in the simulations. All maps were generated by RULE
with 1024 rows and columns (1,048,576 total grid sites) using
the same random number seed. Each map iteration differs only
in roughness,H: (a) 0.1; (b) 0.5; and (c) 0.9. Each grid site
corresponds to 1 ha, with a total of 10 replicate maps were used
in the simulations.

ting H = 0.1, 0.5 or 0.9. Ten triplicate map sets (to-
tal of 30 maps) were used in the simulations reported
here.

Because the spatial configuration of suitable home
range habitat (core areas) has a significant effect on
dispersal success (Gustafson and Gardner, 1996), the
configuration of core area was held constant for all
simulations. Eight core areas, square in shape and ar-
ranged in an arc equidistant from the center and edges
of the map, were used as target areas for dispersal. The
core areas were equal to 256 ha, the size of an aver-
age female marten home range in northern Wisconsin
(Wright, 1999). For simulations reported here, all in-
dividuals were individually released from a single cell
(1 ha) at the center of the map.

2.3. Simulations

2.3.1. Effect of parameter variation
A series of simulation experiments were conducted

to examine the sensitivity of model predictions to a
range of possible parameter values. A selected sub-
set of model parameters that directly affect movement
patterns (e.g.A, C, Q, J, and Y) were individually
varied (Table 2) and the movement of 10,000 indi-
viduals were simulated on 10 fractal maps withH =
0.5. The percent of individuals meeting each disper-
sal fate, the average distance moved each day, and
the average energy reserves of dispersing individuals
were recorded and ANOVA used to determine the im-
portance of landscape features and variation in model
parameters on dispersal success. We also ran addi-
tional simulations to investigate possible interactions
betweenQ andJ.

2.3.2. Effect of landscape pattern
To investigate the effect of landscape pattern on

marten movement, we performed a second series of
simulations on 10 replicate sets of landscapes with
levels ofH set to 0.1, 0.5, and 0.9 (a total of 30 maps).
The spatial pattern of the fractal maps was analyzed by
RULE (Gardner, 1999), which identified habitat clus-
ters using the next-nearest neighbor rule. We selected
four measures of pattern that were relevant to sim-
ulated marten dispersal. The metrics were: the total
number of clusters (Z) as a measure of patchiness;W,
the average number of neighbors per pixel that are of
a different habitat type;V, the area-weighted average

http://www.al.umces.edu/faculty/bobgardner.html
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Table 2
Mean and coefficient of variation (in parenthesis) of the effect of individual parameter perturbations on percent starved (%Starved), percent
killed (%Killed), percent successfully dispersed (%Dispersed), the mean daily displacement (mean displace), and the mean energy level
(mean energy) of dispersing juveniles

Simulation casea %Starved %Killed %Dispersed Mean displace Mean energy

Base case 22.6 (109.0) 25.9 (3.0) 6.9 (74.2) 1458.4 (38.8) 0.75 (34.5)
A = 12 25.8 (109.6) 20.6 (35.6) 4.3 (73.5) 1295.0 (37.7) 0.75 (35.7)
A = 18 21.7 (107.8) 28.3 (32.1) 8.4 (70.7) 1534.2 (39.2) 0.75 (33.8)
J = M 31.2 (94.3) 24.6 (38.5) 6.6 (84.9) 1447.8 (36.9) 0.72 (36.4)
J = C 29.7 (95.1) 25.0 (38.4) 6.6 (85.0) 1431.8 (36.9) 0.72 (36.3)
Q = 1.4 10.2 (129.3) 38.9 (16.4) 10.3 (26.9) 1900.0 (5.7) 0.91 (11.7)
Q = 0.4 97.5 (0.5) 2.5 (19.1) 0 1866.8 (5.8) 0.34 (21.8)
C = 0.4 24.4 (95.4) 24.9 (31.8) 13.8 (72.5) 1769.5 (39.1) 0.74 (33.3)
C = 0.8 21.9 (115.5) 26.0 (34.4) 4.4 (71.5) 1316.5 (38.9) 0.76 (34.9)
Y = a 23.9 (113.4) 36.6 (80.7) 4.6 (64.8) 1444.9 (39.5) 0.75 (35.1)
Y = b 22.7 (114.9) 49.1 (56.9) 3.8 (69.1) 1444.8 (40.0) 0.75 (35.1)
Y = c 25.2 (109.4) 30.4 (68.2) 6.0 (66.7) 1448.7 (39.3) 0.75 (34.5)
Y = e 25.2 (109.4) 30.4 (68.2) 6.0 (66.8) 1448.7 (39.3) 0.75 (34.5)
Y = f 24.1 (106.6) 14.3 (32.2) 8.3 (75.1) 1453.9 (39.1) 0.75 (34.6)

a Base case refers to a simulation with all parameters set at their nominal value.J andY refer to decision and predation rule, respectively.
All perturbation experiments were performed on random fractal maps withH = 0.5. SeeTable 1for parameter and variable definitions.

size of each habitat patch; andX, the average corre-
lation length of each habitat cluster (Gardner, 1999).
Z and W estimate of the frequency with which dis-
persing individuals encounter different habitat types
while V andX estimate differences in the size of these
clusters between map types. Ten thousand individuals
were simulated on each landscape and the percent of
individuals meeting each dispersal fate, the mean dis-
tance moved each day, and the mean energy reserves
of dispersing individuals were recorded. Simple cor-
relations between descriptors of landscape pattern and
model predictions of dispersal were calculated, and
the effect of landscape pattern on dispersal success
analyzed using ANOVA. All statistical analyses were
conducted using SAS (SAS, 2001).

2.3.3. A management scenario
An example of the use of J-walk for a hypothet-

ical forest management scenario was constructed by
creating a marten habitat map for part of Wisconsin’s
Nicolet National Forest (NNF). An index of habi-
tat suitability was generated from logistic regression
of marten radio telemetry data collected byWright
(1999)on the NNF. The logistic regression estimated
the probability of marten use of forest stands as a
function of forest type, mean tree size (dbh), and
degree of canopy closure. These data were obtained

from stand records maintained by the NNF. Marten
presence/absence data were collected in 1016 sepa-
rate forest stands within the NNF: martens were never
observed in 715 of these stands, while 301 stands had
at least one marten observation. The fit of the logistic
model was satisfactory (−2 log Likelihood ratio;χ2 =
107.5), with 6 degrees of freedom andP < 0.0001.
The logistic equation was then applied to each 1 ha
cell of the 58,596 ha portion of the NNF to create 61
classes of habitat suitability. Patches of suitable habi-
tat (i.e. marten core areas) were arbitrarily identified
as sites where the probability of marten observance,
as estimated by the logistic equation, exceeded 0.54.

A second map, simulating management modifica-
tion of 2 marten core areas, was created by reducing
the habitat quality within 2 core areas (i.e.Q, the rel-
ative energy availability) to less than 0.1. The unmod-
ified and modified forest scenario maps had 27.1 and
24%, respectively, sites with aQ value greater than
0.5. Simulations were performed on both maps by the
release of 10,000 martens from a central core area.
With the exception of the map alterations, all other
parameters were as given inTable 1. The proportion
of martens successfully emigrating to other core ar-
eas was recorded, and the visualization of the simula-
tions was used to inspect the spatial details of marten
movement.
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3. Results

3.1. Effect of parameter variation

Table 2reports changes in the percent of dispers-
ing juveniles that starved (%Starved), were killed
(%Killed), successfully dispersed (%Dispersed), as
well as the mean distance moved per day and mean
energy reserves as a consequence of individual pertur-
bations of model parameters (Table 1). The base case
(all parameters set to their nominal value) resulted in
25.9% of the simulated dispersers killed by preda-
tion, 22.6% starved and 6.9% successfully dispersed
(Table 2). Very few individuals (<0.02%) reached
the edge of the map during the 90-day simulations.
The remaining simulations (45.6%) were terminated
after 90 days. The percentage of individuals starving
was most affected byQ, the energy availability ratio.
WhenQ = 1.4, the percent starvation was the lowest
of all cases (10.2%), but whenQ = 0.4, the per-
cent starvation was the highest (97.5%) of all cases
(Table 2). All other parameter perturbations increased
the starvation rate over the base case. The percent
starvation was highly variable across all perturbation
experiments (i.e. the coefficient of variation: 100%),
except whenQ = 0.4 and most individuals starved
(coefficient of variation: 0.5%).

The percent of individuals killed was lowest when
starvation was highest (Q = 0.4) and highest when
Q = 1.4 (Table 2), reflecting the assumed indepen-
dence of these two processes. The ruleY = b, rep-
resenting a quadratic increase in the probability of
predation with greater probability of prey availability
(Fig. 1), results in greatest percentage of individuals
killed (49.1%).

The percent of individuals successfully dispersing
was at a minimum whenQ = 0.4 and at a maxi-
mum whenC = 0.4. Inspection of the visualization
of movement of dispersers showed that lower values
of C, which governs the degree of change in move-
ment direction (Table 1), results in a tendency for dis-
persers to ignore the fine-grained details of the map
and simply “forge ahead” even though local landscape
characteristics may be unsuitable. The percentage of
simulated dispersers that successfully dispersed was
also higher than the base case whenQ = 1.4, Y =
f and A = 18 (Table 2). Longer activity periods,
greater landscape productivity relative to marten star-

vation rates, and predation rates inversely related to
habitat suitability all favor higher average daily dis-
placement and consequently greater rate of successful
dispersal.

The percentage of dispersers that either starved,
were killed, or successfully dispersed exhibited a
threshold effect whenQ ≈ 0.5 (Fig. 3). Variability in

Fig. 3. Changes in the percentage of simulated dispersers either
killed or dispersed (a), or starved (b) as a function of the energy
availability ratio (Q) when model parameters were set at base case
levels (Table 1). Part (a) shows the change in the mean energy
reserves of dispersing individuals and (c) shows the mean distance
moved per day as a function ofQ.
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each dispersal fate was high when 0.6< Q < 1.2 and
the average energy reserves of dispersers increased
rapidly over this interval. The average distance moved
per day was relatively stable whenQ > 0.4 except
for a curious drop associated with high variability
whenQ = 1.0 (Fig. 3). Taken together it would ap-
pear that movement patterns below anQ of 1.0 are
directed toward energy acquisition, while above 1.0
individuals are dispersing—and also experiencing a
greater risk of predation. The reason for the high vari-
ability in dispersal success whenQ = 1.0 (Fig. 3c) is
uncertain, but possibly reflects interactions between
variable energy supplies and the switch from energy
acquisition to dispersal that occur at this point.

The predation rule,Y, had a profound effect on
the predicted fate of dispersing individuals. The most
straightforward comparison was between the linear
functions (Y: a, linear increase;d, linear decrease,
Fig. 4). A linear decrease in the risk of predation
within more suitable habitat resulted in greater disper-
sal and fewer individuals killed by predation. When
predation risk was positively associated with energy
availability (“increasing” functions,Fig. 1), disper-
sal success was generally less and predation higher
(Fig. 4). Note that the “quadratic increasing” and
“exponential decreasing” functions (Fig. 1) produce
relatively high predation probabilities over a broader
range of energy availability values, resulting in higher
mean predation rates (Fig. 4). The effect of movement
decision rule,J, varied by fate (Fig. 4). As expected,
the “maximize energy” rule resulted in the lowest
starvation rates and the “minimize mortality” rule pro-
duced the lowest predation rates (marginally). When
J was set to the “conditional” rule there was less star-
vation than the “minimize predation” rule (J = m,
Table 1), but dispersal success did not increase and
lower average energy reserves were observed than for
the “minimize predation” rule, which ignores energy
status entirely. Different movement decision rules
produced only marginally different dispersal success
rates. Average energy reserves were highest whenJ
was set toe, the “maximize energy” rule.

3.2. Patterns of simulated landscapes and their
effect on dispersal

The four landscape metrics (Table 3) show that the
fractal maps have substantially different patterns. The

Fig. 4. Changes in the percentage of simulated dispersers that
either starved (a), were killed (b) or successfully dispersed (c)
as a function of the movement decision rule (E, M, or C) or the
predation function (seeTable 1). The mean energy reserves (d)
and the mean distance moved per day (e) are also illustrated.
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Table 3
Characterization of spatial pattern of landscape maps used in the simulationsa

Indexb Mean Standard deviation Coefficient of variation Minimum Maximum

H = 0.1
Z 272695.7 25647.5 9.4 240540.0 304646.0
W 5.40 0.14 2.66 5.22 5.60
V 2001.9 1121.1 56.0 386.9 4020.9
X 20.9 4.8 23.2 12.2 28.0

H = 0.5
Z 22948.7 4454.6 19.4 16692.0 30075.0
W 1.69 0.32 18.5 1.26 2.21
V 35732.6 13189.7 36.9 17313.9 55574.7
X 207.9 40.7 19.5 153.2 257.9

H = 0.9
Z 1547.9 290.9 18.8 947.0 2014.0
W 0.28 0.04 15.6 0.21 0.36
V 68793.0 9630.9 13.9 555048.2 81837.7
X 243.2 18.0 7.4 213.7 262.5

a Ten fractal maps withH = 0.1, 0.5 and 0.9 were generated and analyzed using RULE (Gardner, 1999). Each map had 10 habitat types
of equal abundance. Map dimensions were 1024 rows and columns. See text for additional details.

b Pattern indices are:Z: total number of habitat clusters per map;W: average amount of edge per pixel;V: area-weighted average cluster
size; X: correlation length. Statistics are reported in map units, with each map unit (pixel) equal to 1 ha.

total number of clusters (Z) and the amount of edge
per pixel (W) decrease by a factor of 176 and 19,
respectively, fromH = 0.1 to 0.9 (Table 3). Con-
versely, the area-weighted average size (V) and the
correlation length of the clusters (X) increase by fac-
tors of 34 and 11 fromH = 0.1 to 0.9. Because
H controls the degree of autocorrelation of landscape
pattern, maps with higher values ofH have fewer
clusters of larger size and less edge than maps with
lower values ofH (Fig. 2). As expected, all four land-
scape metrics are highly correlated withH (Z: r =
−0.89; W: r = −0.96; V: r = 0.95; andX: r = 0.9).
Most landscape indices are correlated with one another
(Riitters et al., 1995). Therefore, it is not surprising
that the correlation among these four indices was also
high.

The results presented inTable 4show that starva-
tion was lowest (0.5%) and the percent killed was
highest (37.6%) whenH = 0.1. Percent starvation
increased to 33.9% and the percent killed decreased
to 23.7% whenH = 0.9. Because map patterns are
rougher (i.e. negatively correlated) whenH < 0.5, a
dispersing individual was more likely to encounter a
variety of habitat types within a short distance than
whenH > 0.5. Clearly, the differences in roughness
between map types affects, in turn, the fate of dispers-

ing individuals. Surprisingly the degree of success of
dispersing individuals was not related toH (Table 4).
Although the average displacement of a dispersing in-
dividuals was highest whenH = 0.9, this attribute is
highly variable between map types and these small dif-
ferences did not appear to be significant. The average
energy reserves of dispersing individuals decreases by
14% fromH = 0.1 to 0.9 (Table 4).

Table 5presents an ANOVA of the individual pa-
rameter perturbation experiments. The variance in
model predictions accounted for by the parameters
we varied (Q, map replicate,C, A andY) ranged from
a minimum of 66% (percent killed) to a maximum
of 84% (percent starved and mean energy level).Q,
the energy availability ratio, was the most important
variable in the ANOVA for percent starved, percent
dispersed and the mean energy level. Map replicate,
which measures map-to-map differences in landscape
pattern, was the next most important determinant of
variability in dispersal success.C, the standard devia-
tion of the turning angle, which affects the pattern of
tortuosity of the movement pattern across the land-
scape, was also significantly related to mean daily
displacement and dispersal success. The predation
rule (Fig. 1) affected the percent of individuals either
killed or successfully dispersing, but was not related
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Table 4
Results of 10,000 simulated individuals within three different types of random landscapesa

Model predictionsb Mean Standard deviation Coefficient of variation Minimum Maximum

H = 0.1
%Starved 0.5 0.739 148.4 0 1.8
%Killed 37.6 5.76 15.3 25.5 45.1
%Dispersed 6.84 2.90 42.5 1.68 10.8
%Edge 0.03 0.013 47.0 0 0.04
Mean displace 1503.2 417.0 27.7 752.0 1950.0
Mean energy 0.836 0.148 17.7 0.58 0.987

H = 0.5
%Starved 22.6 24.7 109.0 0.87 66.9
%Killed 25.9 8.56 33.0 14.3 37.0
%Dispersed 6.92 5.14 74.2 0.16 12.7
%Edge 0.02 0.014 63.6 0 0.04
Mean displace 1458.0 566.4 38.8 761.2 1983.0
Mean energy 0.751 0.259 34.4 0.441 0.991

H = 0.9
%Starved 33.9 36.0 106.2 0.94 90.6
%Killed 23.7 9.89 41.7 9.35 38.9
%Dispersed 6.79 6.26 92.0 0 13.4
%Edge 0.03 0.02 84.9 0 0.07
Mean displace 1592.7 491.1 30.8 903.9 1990.3
Mean energy 0.701 0.303 43.21 0.367 0.993

a Ten fractal maps withH = 0.1, 0.5 and 0.9 generated with RULE (Gardner, 1999) were used in the simulations. The patterns of these
landscapes are reported inTable 3.

b The recorded fates of dispersing individuals were: %Starved: percent of individuals starving; %Killed: percent of individuals dying by
predation; %Dispersed: percent of individuals successfully dispersing; %Edge: percent of individuals reaching edge of map. The average
displacement (mean displace) and average energy level (mean energy) were also recorded.

Table 5
F-values from an analysis of variance of dispersal success

Source of variationa d.f. Dependent variablesb

%Starved %Killed %Dispersed Mean displace Mean energy

Map replicate 9 103.8∗∗∗ 12.1∗∗∗ 46.2∗∗∗ 110.1∗∗∗ 186.7∗∗∗
Q 2 661.5∗∗∗ 27.5∗∗∗ 49.2∗∗∗ 48.9∗∗∗ 221.1∗∗∗
A 2 0.9 2.6∗ 7.3∗∗∗ 5.2∗∗ 0.1
C 2 0.9 1.4 52.1∗∗∗ 18.5∗∗∗ 0.4
Y 4 0.8 13.1∗∗∗ 4.8∗∗∗ 0.0 0.2
J 2 3.2∗ 0.0 0.1 0.1 0.7
Errorc 129 (2.06E1) (1.47E−2) (5.77E−4) (3.18E4) (4.16E−3)

R2 0.95 0.66 0.85 0.91 0.95

Results are based on 10,000 simulated martens on 10 fractal maps withH = 0.5. The asterisks by theF-values indicate the level of
significance:∗P ≤ 0.05; ∗∗P ≤ 0.01 and∗∗∗P ≤ 0.001.

a The dependent variables in the ANOVA are: map replicate: the iteration number of the randomly generated maps; definitions of other
parameters may be found inTable 1.

b The recorded fates of dispersing martens were: %Starved (percent of individuals starving). %Killed (percent of individuals dying by
predation), and %Dispersed (percent of individuals successfully dispersing) were arcsine transformed before analysis by the SAS GLM
procedure (SAS, 2001). The average displacement (mean displace) and average energy level (mean energy) were also recorded.

c The mean squared error is shown in parenthesis.
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Table 6
Correlations between landscape descriptors and dispersal for
10,000 simulations on 10 replicates each of maps withH = 0.1,
0.5 and 0.9

Model
predictions

Landscape descriptorsa

Z W V X H

%Starved −0.47∗∗ −0.51∗∗ 0.59∗∗∗ 0.53∗∗ 0.49∗∗
%Killed 0.64∗∗∗ 0.64∗∗∗ −0.63∗∗∗ −0.66∗∗∗ −0.57∗∗∗
%Dispersed 0.007 0.02 −0.13 −0.07 −0.002
Mean displace 0.003 −0.02 −0.03 −0.03 0.08
Mean energy 0.25 0.26 −0.36∗ −0.30 −0.23

a Pattern indices are:Z: total number of habitat clusters per map;
W: average amount of edge per pixel;V: area-weighted average
cluster size;X: average correlation length of all habitat patches.
Significance values of correlation coefficients are indicated by
asterisks:∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001.

to the other model predictions (Table 5). J, the move-
ment decision rule that governs the habitat choices of
the dispersing individuals was weakly related to the
percentage starved, and not significantly related to
any of the other model predictors. Surprisingly,A, the
number of hours that individuals were active, was not
significantly related to any of the model predictions.

The ANOVA results reported inTable 5 show
that systematic differences in maps (e.g. map repli-
cate) were significantly related to model predictions
(Table 5). The individual parameter perturbation ex-
periments reported in this ANOVA were performed
on 10 replicates of a single map type (i.e. a fractal

Table 7
F-values from an analysis of variation of landscape effects on dispersal success

Source of variationa d.f. Dependent variablesb

%Starved %Killed %Dispersed Mean displace Mean energy

H 2 8.8∗∗ 15.1∗∗∗ 0.0 0.6 3.3
Map replicate 9 3.8∗∗ 3.5∗∗ 12.8∗∗∗ 7.7∗∗∗ 10.5∗∗∗
Z 1 3.4 0.0 9.4∗∗∗ 0.8 1.6
Errorc 17 (4.17E−2) (4.1E−7) (4.73E−4) (7.64E4) (1.42E2)

R2 0.76 0.78 0.88 0.80 0.85

ANOVA results were performed using a general linear model (SAS, 2001) on the simulated dispersal of 10,000 martens on 10 replicate
fractal maps withH set to 0.1, 0.5 and 0.9 (total of 30 maps) and all model parameters set to their nominal value (Table 1). The asterisks
by the F-values indicate the level of significance:∗P ≤ 0.05; ∗∗P ≤ 0.01 and∗∗∗P ≤ 0.001.

a The dependent variables in the ANOVA are: map replicate: the iteration number of the randomly generated maps;H: the roughness
parameter used to generated the fractal maps; andZ: the total number of habitat clusters on the map.

b The recorded fates of dispersing martens were: %Starved (percent of individuals starving). %Killed (percent of individuals dying by
predation), and %Dispersed (percent of individuals successfully dispersing) were arcsine transformed before analysis by the SAS GLM
procedure (SAS, 2001). The average displacement (mean displace) and average energy level (mean energy) were also recorded.

c The mean squared error is shown in parenthesis.

map withH = 0.5). To test the effect on dispersal of
different spatial arrangements of habitat within fractal
maps, a second set of simulations was performed with
10 map replicates withH set to 0.1 and 0.9 with all pa-
rameters set to their nominal values (Table 1). A com-
parison of the individual landscape metrics showed
that the percent of dispersing individuals starved or
killed was significantly related to differences in land-
scape patterns but dispersal success and mean daily
displacement were unrelated to any of the landscape
metrics (Table 6). This result is surprising because
the algorithm used in the model simulates movement
steps that are biased by local habitat characteristics.
One might assume, therefore, that the size and ar-
rangement of habitat, which varies withH, would
significantly affect dispersal as well as mortality.

An ANOVA of the simulations performed on the
three types of fractal maps (Table 7) provides addi-
tional insight into this apparent contradiction. Indeed,
individual differences between maps (i.e. differences
between map triplicates) was the most significant vari-
able predicting dispersal success. However, when a
landscape metric was added to the ANOVA (e.g. the
total number of habitat clusters on the map), landscape
pattern, adjusted for differences in map replicate, was
also significant. These two variables, map replicate
and total clusters, clearly indicate that the success of
dispersing individuals is dependent on landscape pat-
tern. However, although mortality (percent starved and
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Table 8
Simulation changes in marten percent dispersal success and percent
mortality in the Nicolet National Forest due to habitat modification

Core areaa Percent dispersal success

Unmodified
habitat map

Modified habitat
mapb

1 0.01 0.0
2 2.2 12.7
3 6.9 9.0
4 0.6 5.9
5 33.8 –
6 0.01 0.0
7 6.3 7.6
9 0.8 9.9

10 22.0 –
11 0.07 3.0
12 1.7 2.0

Total 74.2 50.2

Percent mortality

%Starved 2.7 5.6
%Killed 11.9 21.7

Total 14.6 27.3

a Virtual martens were released from core area 8 and the per-
centage of martens successfully reaching other core areas were
recorded.

b The habitat quality of core areas 5 and 10 was modified mak-
ing them unsuitable for marten residence. See text for additional
details.

killed) was significantly related toH, there was very
little difference in dispersal success simply due to the
roughness of the maps (Table 4). We also examined
the possibility thatH, when corrected for the effect
of map replicate andZ, might be significant. The cor-
rected sum of squares (SAS, 2001) was significant at
P < 0.05, indicating a modest contribution of map
roughness to dispersal success that was independent
of the unique features of each map replicate or the to-
tal number of clusters found on the map.

The results of the management scenario simulations
(Table 8) show that the modifications of the marten
habitat map resulted in a 24% decline in dispersal suc-
cess. This dramatic change is largely attributable to
spatial effects because the modified map has nearly
as much core marten habitat (24%) as the unmod-
ified map (27.1%). Because removal of the 2 core
sites nearest the release point (sites 5 and 10,Table 8)
caused dispersing martens to take 84% more disper-
sal steps within the modified map, these martens ex-

perienced a higher rate of mortality (27.3%) than on
the unmodified map (14.6%,Table 8). Spatial effects
are also apparent in the changing pattern of immigra-
tion success: core areas 3, 7, and 12 were nearly un-
changed between the modified and unmodified maps
while core areas 4, 9, and 11 experienced more than
an order of magnitude increase in immigration success
(Table 8).

4. Discussion

Spatially explicit population models, or SPEMs
(Dunning et al., 1995a,b), have become important
tools for species management, preservation, and pro-
tection (den Boer, 1981; Fahrig, 2001; Tester et al.,
1997). The use of SPEMs has increased our aware-
ness of the importance of dispersal success for pre-
dicting population expansion and persistence (e.g.
Bascompte and Sole, 1998; Fahrig, 1998; Wiegand
et al., 1999). Consequently a wide variety of mod-
els have been developed to characterize dispersal at
landscape scales (see review byZabel, 1994). Among
the most influential have been the reaction-diffusion
equations introduced to ecologists by Skellam in his
seminal paper (Skellam, 1951). Reaction-diffusion
models, which usually assume a homogeneous land-
scape (but seeFlather and Bevers, 2002), have been
responsible for the development of a comprehensive
theory of population movement and spread (Okubo,
1980; Turchin, 1998). However, the assumption of ho-
mogeneity becomes inadequate when landscapes are
highly fragmented (Johst and Brandl, 1997;Gustafson
and Gardner, 1996; Hof and Flather, 1996; King and
With, 2002).

Models that explicitly consider the effect of habi-
tat heterogeneity on movement patterns often replace
equations for diffusion with an individual-based mod-
eling approach (Zabel, 1994). Individual based models
allow the details of animal movement and interaction
with the environment to be explicitly simulated, al-
though analytical solutions for these movement algo-
rithms have not been developed (Grimm et al., 1999).
Landscape heterogeneity may be represented in a va-
riety of forms in these models, with simple 2-phase
maps (e.g.King and With, 2002; Turner et al., 1993;
Hiebeler, 2000) or corridors linking adjacent habi-
tat patches (e.g.Bunn et al., 2000; Anderson and
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Danielson, 1997; Henein and Merriam, 1990; Tis-
chendorf et al., 1998) being the most common formu-
lations.

Martens are highly active animals that move and
forage over very large areas. Because marten disper-
sal events result in diverse habitats being encountered,
simple representations of landscapes are inadequate.
J-walk is the first model to simultaneously consider
the effects of multiple habitat types, the energetic con-
straints of dispersing organisms and habitat-specific
variation of predation risk on successful range expan-
sion of a reintroduced species. The advantage of this
approach is that these multiple factors, and their in-
teractions, may be quantified. The primary disadvan-
tage is the increased model complexity the numerous
parameters that must be estimated and the need for
complex simulations, rather than analytical solutions,
to characterize results (Grimm et al., 1999). Never-
theless, the modeling framework of J-walk provides a
foundation for empirical studies to identify key param-
eters and processes which must be measured, and pro-
vide sufficient data to test these predictions in the field.

The simulations with J-walk reported here are based
on data and observations of the reintroduction of 172
American martens (M. americana) into the Nicolet
National Forest, Wisconsin, USA between 1975 and
1983. Because of the broad range of uncertainties con-
sidered, sets of simulations were performed to investi-
gate the impact of unknowns on the behavior and fate
of marten dispersal. The results indicate that variation
in dispersal success is best explained by both the land-
scape features (i.e. the spatial arrangement of suitable
habitat and the spatial variation in prey availability)
as well as parameters that modify species-specific de-
scriptors of dispersal.

In the experiments that varied the degree of habi-
tat roughness (parameterH, Table 1), the arrangement
of habitat was similar at broad scales, but differed in
the roughness of the pattern at fine scales (seeFig. 2).
AlthoughH results in significant changes in map pat-
tern (Table 3), the analysis of variance showed that
“map replicate” (i.e. map-to-map variation in pattern)
was more important then variation in roughness pro-
duced byH (Table 7). This result was unexpected and
implies that differences in pattern, as revealed by a
variety of landscape indices, were unimportant while
the peculiar arrangement of habitat of each map trip-
licate was an important determinant of dispersal suc-

cess. Visual inspection of simulation results indicated
that this effect was probably due to the broad-scale
variation in habitat near the center of each map where
individuals were released. Large unsuitable areas (i.e.
regions dominated by habitat type 1) in the center of
the map reduce overall dispersal success while large
suitable regions enhance it. Bear in mind that if one
tried to select natural areas for an empirical study so
that landscape replicates were as similar as possible,
the degree of difference between maps would be much
greater than that between replicates of the 10 artifi-
cially generated maps. Even if similar natural areas
could be selected, the results of these simulations in-
dicate that the idiosyncratic nature of each landscape
will play a significant role in the fate of dispersing
animals.

The variation in energy availability (i.e. prey abun-
dance) within different habitats and the energy require-
ments of dispersing organisms is another important
unknown. The expression of these two variables as a
ratio (Q) allowed a parsimonious representation of the
relative variation in the prey abundance as a function
of the metabolic requirements of dispersing martens.
The three fates of dispersing individuals measured by
J-walk (dispersers either starve, are killed by preda-
tors, or fail to find suitable habitat within 90 days)
showed that variation inQ had a significant impact
on each dispersal fate (Table 5). With higher relative
energy availability, fewer dispersers starved, but be-
cause individuals were able to move over a longer pe-
riod of time they were more susceptible to being killed
by predators. A threshold in dispersal outcome may
exist when the average level of landscape productiv-
ity is approximately 50% of that required by dispers-
ing martens (Q∼0.5, Fig. 3a and b). The existence of
this threshold implies that a lowered relative energy
availability caused dispersing individuals to “switch”
behavior from a high dispersal mode to a more in-
tense pattern of foraging for prey as the risk of star-
vation increased (Fig. 3b). The high metabolic rate of
martens would seem to play an important role in dis-
persal within natural systems. But equally important
is the assessment of prey availability within the land-
scape. Knowledge of both variables will be required
to adequately assess the dispersal potential of martens
residing in real landscapes.

The specification of a variety of predation functions
(Y) allowed us to also evaluate the effect of different
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assumptions about the interaction between prey abun-
dance and predation risk on dispersal. Variation in
the predation functions produced significant changes
in the percent killed and percent successfully dispers-
ing (Table 5). The interaction of the predation rules
with the energy availability ratio was also important:
the quadratic increase and exponential decrease func-
tions produced relatively high mortality rates over a
broader range ofQ values. These results suggest that
increased predation risk in energy-rich habitats (i.e. the
“increasing”Ycases) reduced dispersal success (com-
pare “linear increase” to “linear decrease” inFig. 4).
Assumptions regarding both the shape and slope (in-
crease or decrease) of the predation function seem to
be equally important in determining dispersal outcome
(Fig. 4). It is obvious that when dispersers avoid pre-
dation (e.g.Y = f , Table 2) they are more likely to
successfully disperse.

Rather than select a single decision rule for dis-
persal, J-walk implements three sets of alternative
assumptions (J, Table 1) which alter the movement
decision criteria based on the energy requirements
of the dispersing animal (J = e), the risk of preda-
tion (J = m), or a “conditional” rule which attempts
to balance energy gain with reducing predation risk
(J = c). Although a significant interaction between
behavior and habitat pattern was expected, simulation
results demonstrated that dispersal outcomes did not
differ significantly as a result of the differentJ cases
(Table 5 and Fig. 4). The “conditional” rule gener-
ally had the same effect as the “minimize predation”
rule on the percent successful dispersal. However,
because the “conditional rule” switches to the “max-
imize energy” rule when energy reserves were low, a
decrease in the percent of dispersers that starved re-
sulted. Because percent killed and percent dispersed
are only marginally higher under the “conditional”
rule compared to the “minimize predation” rule, the
dispersers that were saved from starvation by the
“conditional” rule apparently experienced the other
dispersal fates in relatively equal proportions.

The overall direction of dispersal is controlled by
the variability in the turning angle,C. Increases inC
result in more tortuous pattern of movement and a de-
cline in the average distance moved per day (Table 2).
Decreases inC significantly increased dispersal suc-
cess (Table 5) because the pattern of movement be-
comes more directional allowing martens to explore a

larger area in less time and, on average, more quickly
finding a suitable habitat patch. Because predation is
simulated at each time step, less wandering means less
exposure to predation. This effect of the turning an-
gle is well known from other studies that have simu-
lated dispersal as a correlated random walk (Kareiva,
1983; Siniff and Jessen, 1969). However, information
regarding the estimation ofC for dispersing martens
is not currently available (John Wright, personal com-
munication).

The movement algorithm within J-walk is a com-
plex formulation that considers the variation in habitat
pattern, the physiological status of dispersers, and
a variety of assumptions regarding predation and
movement. Nevertheless, J-walk still simplifies many
aspects of movement that may significantly impact
dispersal success. Examples of such factors include
the long-range perception of habitat quality, species
interactions including avoidance of predators and
con-specifics, and the time-dependent modification
of movement through learning. Although not specifi-
cally modeled, the current version of J-walk provides
some insight into each of these factors. For example,
simulation results indicate that variation in the risk
of predation significantly affects dispersal success
(Table 5). This result implies that the slow rate of
range expansion within the Nicolet National Forest
may be the result of martens avoiding the abundant
and widespread fisher. However, estimates of aver-
age predation mortality of dispersing martens in the
Nicolet are unavailable. It is possible that martens
are able to avoid fishers by detection of their scent
trails. Inclusion of this dynamic within J-walk would
be relatively straight forward, but requires extensive
data regarding fisher abundance and movement as
well as fisher–marten interactions. Because martens
are highly active, and have a keen sense of smell,
they may have a greater perceptual range than we
have simulated (100 m). A greater perceptual range
may significantly enhance dispersal success (Lima
et al., 1999), making experiments similar to those
recommended byLima and Zollner (1996)of value.
Although learning has been simulated in other models
(Saarenmaa et al., 1988), the empirical information
required to estimate parameters for these algorithms
is unavailable for martens.

The simulation methods implemented in J-walk
were specifically designed to simulate dispersal on
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very large landscapes. The landscape extent for the
simulations reported here was set to 10,486 km2 to
minimize the number of dispersers (<0.02%) reach-
ing the edge of the map before the simulation was
concluded. Marten movements of this extent are con-
sistent with empirical studies (Gilbert et al., 1997)
that have documented movements in excess of 64 km
from their initial capture site. Although simulated
landscapes were constrained to have equal levels of
habitat availability, the spatial pattern of the gen-
erated landscapes covered a wide range of spatial
heterogeneity (Table 3). However, the patterns of
patch (stand) size and edge per pixel generated with
H = 0.1 most closely resembles the pattern found in
the Fisher/marten Management Unit of the Nicolet
National Forest (Wright, 1999). Simulation results
also indicate that dispersing martens had the highest
energy levels and experienced the greatest level of
predation on landscapes withH = 0.1 (Table 4).

It is premature to use the results reported here as
guidance for developing specific plans to assure the
growth and sustainability of marten populations or to
identify general principles. It is interesting, however,
that our simulations result are generally consistent
with several common axioms of wildlife manage-
ment: (1) Food availability is critical for dispersing
organisms who must sustain themselves by finding
sufficient energy within novel habitats; (2) variability
in exposure to predation (either real or perceived) is an
important determinant of dispersal success; and (3) the
spatial pattern of habitat features may either enhance
or diminish the probabilities of survival and dispersal.
The unknown parameters that must be estimated em-
pirically to use J-walk as a predictive tool are substan-
tial, although we have work currently under way to
provide some of these values for martens in Wisconsin.
The most important unknowns are: (1) an improved
understanding of the energy budgets of dispersers in
various habitats. Energy availability is presumably a
function of prey population densities and the micro-
habitat structure that allows martens to capture prey.
(2) Quantitative estimates of predation risk and energy
availability in habitats outside of core range areas are
also needed. Predation during dispersal is important,
suggesting that information on habitat-specific mor-
tality rates would help in the management of land-
scapes for marten dispersal. (3) Empirical estimates
of the degree of route tortuosity during dispersal (i.e.

estimates ofC) are needed to realistically simulate
movement. (4) A more precise determination of habi-
tat pattern on dispersal behavior must be determined.
Although dispersal did not differ between map types
(i.e. degree of roughness as modified byH), the spe-
cific patterns of each map triplicate (i.e. map replicate
in Table 5) did significantly affect dispersal success.

Our results also suggest that dispersal success
is relatively insensitive to variation in a number of
model parameters. The parameter perturbation exper-
iments showed that changes in the number of hours a
disperser was active (A) from 12 to 18 h had a small
effect, increasing dispersal from 4.3 to 8.4% (Table 2).
However, when all parameters were simultaneously
varied the activity parameter was even less important
in explaining overall dispersal success (Table 5). The
movement decision rule (J, Table 1), which modifies
fine-grained movement patterns, did not significantly
affect landscape-scale dispersal success. Although
individual martens certainly do have behavioral char-
acteristics that may modify fine-grained movement
patterns, our results suggest that other factors are
more important in determining dispersal outcome.

Simple models of dispersal have been shown to be
extremely sensitive to small changes in parameters that
affect the rate of mortality of dispersing organisms
(Kareiva et al., 1997; Mooij and DeAngelis, 1999;
Ruckelshaus et al., 1999). Not surprisingly, predictions
of population persistence based on these models of
dispersal are extremely sensitive to the assumed rate
of mortality (South, 1999). However, simulations with
J-walk do not confirm these results. It appears that the
spatial variation in predation risk within J-walk allows
dispersing organisms to avoid predation (especially
when energy levels are high) resulting in relatively
minor consequences when there is wide variation in
predation-induced mortality. Evidently, the simulation
of multiple processes affecting mortality (rather than
its representation by a single, fixed parameter) dramat-
ically alters the sensitivity of model results to mortal-
ity rates.

In spite of the large uncertainties associated with
the process of dispersal, simulations with models
such as J-walk may assist the development of strate-
gies for managing the establishment of reintroduced
populations such as the American marten. In our
hypothetical management scenario, the map modifi-
cations simulated change in habitat quality as a result



356 R.H. Gardner, E.J. Gustafson / Ecological Modelling 171 (2004) 339–358

of natural disturbance, forest harvesting or, perhaps,
the presence of resident martens within those core
areas. The distance moved by martens increased by
84% on the modified maps, resulting in a 25% decline
in dispersal success and a 12.7% increase in mortality
from starvation and predation. Because the simula-
tions with J-walk are spatially explicit, it is possible to
view the details of the simulations and locate sites that
either block dispersal or produce unusually high rates
of mortality. Such results might suggest relatively
inexpensive modifications that would significantly
enhance dispersal success.

We present these management simulations as a
heuristic tool to evaluate relative changes in dispersal
success as a function of particular changes in model
inputs and parameters. Simulations to address a va-
riety of other management issues can be constructed
for J-walk, and might include: (1) Investigations of
the relative effect of landscape alterations on dispersal
success. Proposed landscape plans (i.e. the develop-
ment of dispersal corridors, the construction of roads,
etc.) might serve as a template for model simulations
to evaluate the relative merits of each plan. (2) An
assessment of cost-efficient strategies for enhancing
the establishment and persistence of reintroduced
species. For instance, would a decrease in mortality
due to the removal of predators provide a significant
advantage to newly released marten populations? (3)
Determination of the effects of land use change due
to natural or anthropogenic disturbances on dispersal.
Comparison of maps of forest disturbance against
undisturbed systems might reveal important aspects
of dispersal success similar to that represented by the
“map replicate” variable inTable 5. (4) The effect
of habitat improvement, especially improvement that
results in an increased production of prey species,
might be systematically explored. In the absence of
additional data, such simulations must be based on
hypotheses relating forest age and structure to the
production of prey.

We believe that the simulations with models such
as J-walk may assist the design and implementation
of empirical studies to reduce uncertainties associated
with the reintroduction of a variety of threatened and
endangered species. Even when models have signif-
icant unknowns, as is the case here, they provide a
quantitative means of assessing the importance of po-
tential studies to increase understanding and improve

prediction accuracy. We are currently using these mod-
eling results to design and undertake such studies.
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