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a COMPaRISON OF FIa PLOT DaTa DERIVED FROM IMaGE PIXELS  
aND IMaGE OBJECTS

Charles E. Werstak, Jr.1

Abstract.—The use of Forest Inventory and Analysis (FIA) plot data for producing 
continuous and thematic maps of forest attributes (e.g., forest type, canopy cover, 
volume, and biomass) at the regional level from satellite imagery can be challenging 
due to differences in scale. Specifically, classification errors that may result from 
assumptions made between what the field data represent and what the corresponding 
spectral information of the image pixels depict. This investigation aimed at determining 
whether image objects derived from Landsat TM imagery can be used as an alternative 
to a 3 by 3 neighborhood of pixels for characterizing forested FIA plots. Results showed 
strong positive correlations between the different scales of base map units across all of 
the image derivatives. Further examination of the data using the Wilcoxon signed rank 
test for paired samples indicated that in most cases, finer level image objects were a 
better representation of the 3 by 3 neighborhood of pixels than coarser ones and some 
image derivatives performed better than others. The same tests were applied to a subset 
of plots dominated by quaking aspen (Populus tremuloides Michx.) with similar results. 
Information gained may provide further insight into object based segmentation and 
classification methods using FIA plot data, satellite imagery, and ancillary geospatial 
data.
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INTRODUCTION
Several studies have compared image pixel-based 
classification to image object-based segmentation 
and classification for mapping different vegetation 
attributes from remote sensing imagery, many of 
which have shown that using image object-based 
segmentation combined with decision tree image 
classification methods often achieve higher accuracies 
(Chubey et al. 2006, Gao and Mas 2008, Hay et 
al. 2005, Karl and Maurer 2010, Kim et al. 2010, 
Yasumasa et al. 2011). 

Quaking aspen (Populus tremuloides Michx.) was 
selected as the species of interest because it is a 
critical species that supports wildlife and livestock, 
watershed function, the forest products industry, 

landscape diversity, and recreation in the Interior West 
(Bartos and Campbell 1998). Studies have indicated 
that changes in fire regimes, an increase in herbivore 
presence in young aspen stands, and recent drought 
episodes are the main factors for increased mortality 
rates in aspen (Deblander et al. 2010). 

This objective of this investigation was to determine 
whether different scales of image objects derived from 
Landsat TM imagery can be used as an alternative 
to a 3 by 3 neighborhood of pixels for characterizing 
canopy cover of forested Forest Inventory and 
Analysis (FIA) plots and aspen dominated FIA plots. 

FIa PLOT DaTa
Multi-condition forested plots having 10 or greater 
percent canopy cover of live trees were queried from 
the FIA database for Utah, inventory years 2000-
2009, resulting in 3,224 plots. Basal area per acre 
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was computed by species and summed to the plot 
level. The Interior West core optional variable crown 
cover percent (CRCOVPCT_RMRS) was used in 
conjunction with basal area per acre, to calculate tree 
cover and tree cover by species (absolute cover) for 
the plots (USDA Forest Service 2011). Ultimately, 
these values were used to calculate the percent canopy 
cover by species (relative cover) for the plots.

PREDICTOR DaTa
Three different Landsat TM scenes acquired over 
Utah during the summer of 2009 were used in the 
analysis (Table 1). The scenes were converted to 
Top-Of-Atmosphere (TOA) reflectance using standard 
Landsat-specific methods. The following vegetation 
indices and image transformations were calculated for 
each scene:

1. Enhanced vegetation index (EVI)
2. Normalized difference vegetation index (NDVI)
3. Normalized difference moisture index (NDMI)
4. Modified soil adjusted vegetation index 

(MSAVI2)
5. Tasseled cap transformation (TCAP)
6. Principal components analysis (PCA)

Layer stacks were created for each scene using the 
following derivatives: Landsat TM reflectance bands 
1:6, NDVI, PCA first principal component, and 
TCAP bands 1:3. Due to anomalies with the blue 
bands resulting from the TOA conversion, EVI was 
calculated on the Landsat Standard Terrain Correction 
(Level 1T) product.

Table 1.—acreage summaries for image objects corresponding to forested FIa plots. Image object size is 
a function of the scale parameter.

TM Scene Number of eCognition average Size Minimum Size Maximum Size
(Path/Row) FIa Plots Scale Parameter (acres) (acres) (acres)

37/32	 691	 25	 161.36	 10.23	 717.00

37/32	 691	 15	 62.14	 2.45	 232.40

38/31	 153	 25	 158.28	 21.57	 695.21

38/31	 153	 15	 60.54	 9.56	 175.02

38/33	 466	 25	 161.86	 12.90	 607.58

38/33	 466	 15	 61.66	 5.56	 248.42

NEIGHBORHOOD PIXELS  
aND IMaGE OBJECTS 
A 3 by 3 neighborhood of pixels was generated for 
each forested FIA plot location to correspond to the 
FIA plot design. To create the 3 by 3 neighborhoods 
around the 3,224 FIA plots, point feature classes 
of the X and Y plots (plot center of subplot one) 
were converted to 30 m thematic raster images, and 
then 3 by 3 neighborhood filters were applied. As a 
Landsat pixel is 30 m by 30 m or 900 m2, a 3 by 3 
neighborhood consisting of nine pixels is 8,100 m2 or a 
little greater than 2 acres. The area of one FIA subplot 
is 168.11 m2, therefore the area of four FIA subplots is 
1809.56 m2. The outermost circumference of four FIA 
subplots is 6052.08 m2 or just under 1.5 acres, which 
is almost 75 percent of the 3 by 3 neighborhood pixel 
area (Fig. 1A).

Several different scales of image objects were 
generated from the Landsat TM layer stacks using 
Trimble eCognition software (Definiens 2009). Using 
National Agriculture Image Program (NAIP) 1 m 
color-infrared imagery acquired in 2011 as a backdrop, 
the different scales of image objects were visually 
evaluated to determine which scale(s) best delineated 
forest stands (Figs. 1B, 1C, and 1D). Ultimately, two 
different scales of image objects (scale parameter 25 
or “coarse”, and scale parameter 15 or “fine”) were 
identified for use in this analysis. Table 1 is a summary 
of the image object acreages for each TM scene.
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Figure	1.—An	example	of	the	FIA	plot	design	over	a	grid	of	Landsat	TM	pixels	(A)	followed	by	examples	of	the	two	different	
scales	of	image	objects	used	in	the	analysis	overlaid	on	Landsat	TM	(RGB	4,	3,	2)	and	2011	1	m	NAIP	(RGB	4,	3,	2)	(D).	
Scale	factor	25	(B)	is	coarse,	scale	factor	15	(C)	is	fine,	and	scale	factor	15	(D)	is	fine.
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Figure	2A.—An	example	of	scatterplots	(NDVI	and	TCAP	Band	3—Wetness)	for	forested	FIA	plots	showing	strong	positive	
correlations	between	the	3	by	3	pixel	area	values	and	the	image	object	values.

MaP UNIT COMPaRISONS
Zonal statistics were calculated for the predictor 
data using the two different scales of image objects 
and the 3 by 3 neighborhood pixel areas for each 
Landsat TM scene. Simple linear correlation was 
used to examine the relationships between the zonal 
means of the 3 by 3 neighborhood pixel areas and 
the corresponding image objects for the forested FIA 
plots for all of the predictor layers. The scatterplots 
(Fig. 2A) showed strong positive correlations between 
the different scales of base map units across all of 

the image derivatives with the finer scaled image 
objects consistently having higher Pearson’s r values 
(Table 2). This was expected due to eCognition’s 
homogeneity criterion, which is a combination of 
spectral homogeneity and shape homogeneity, used 
to produce image objects. Essentially, the upper 
heterogeneity threshold is determined by the maximum 
standard deviation derived from the weighted input 
image layers and controlled by the scale parameter—
the lower the scale parameter, the lower the threshold, 
the smaller the image objects (Definiens 2009). 
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Figure	2B.—An	example	of	scatterplots	(NDVI	and	TCAP	Band	3—Wetness)	for	aspen	plots	with	a	relative	cover	>50	percent	
showing	strong	positive	correlations	between	the	3	by	3	pixel	area	values	and	the	image	object	values.
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Table 2.—Results of the 3 by 3 neighborhood pixels compared to image objects for forested FIa plots.  
P values less than α = 0.05 are bold.

TM Scene Pearson’s r Wilcoxon Signed Rank Test
(Path/Row)  N Image Derivative Scale 25 Scale 15 Scale 25 Scale 15

37/32	 691	 EVI	 0.9	 0.94	 0.1551	 0.7078
	 	 MSAVI2	 0.95	 0.96	 0.0001	 0.0311
	 	 NDMI	 0.91	 0.93	 0.0041	 0.0199
	 	 NDVI	 0.94	 0.96	 0.0006	 0.0665
	 	 PCA(1)	 0.95	 0.97	 0.0290	 0.0505
	 	 TCAP(1)	 0.95	 0.97	 0.0445	 0.0567
	 	 TCAP(2)	 0.93	 0.95	 0.0171	 0.3549
	 	 TCAP(3)	 0.93	 0.94	 0.0059	 0.0203

38/31	 153	 EVI	 0.91	 0.	95	 0.0953	 0.0097
	 	 MSAVI2	 0.94	 0.96	 0.8931	 0.2189
	 	 NDMI	 0.92	 0.95	 0.5368	 0.9075
	 	 NDVI	 0.94	 0.96	 0.9594	 0.1984
	 	 PCA(1)	 0.93	 0.96	 0.4797	 0.7150
	 	 TCAP(1)	 0.93	 0.95	 0.5119	 0.7993
	 	 TCAP(2)	 0.92	 0.96	 0.3960	 0.0373
	 	 TCAP(3)	 0.93	 0.95	 0.6072	 0.8845

38/33	 466	 EVI	 0.93	 0.95	 0.5420	 0.4122
	 	 MSAVI2	 0.96	 0.97	 0.1684	 0.3393
	 	 NDMI	 0.94	 0.95	 0.0048	 0.0228
	 	 NDVI	 0.96	 0.97	 0.2911	 0.4211
	 	 PCA(1)	 0.97	 0.98	 0.2528	 0.9638
	 	 TCAP(1)	 0.97	 0.98	 0.4766	 0.7257
	 	 TCAP(2)	 0.95	 0.96	 0.4616	 0.3658
	 	 TCAP(3)	 0.94	 0.96	 0.0009	 0.0204

FIA plots with a relative cover greater than 50 percent 
of quaking aspen were filtered from the whole sample 
and simple linear correlations applied. The scatterplots 
again showed strong positive correlations (Fig. 2B) 
and the finer scaled objects consistently had higher 
Pearson’s r values (Table 3). 

To get a further understanding of the relationships 
between the pixel-based and object-based values, a 
Wilcoxon signed rank test for paired samples was 
used to test for differences between the 3 by 3 pixel 
neighborhood and a) the coarser image object values, 
and b) the finer image object values. Results (Table 
2) of the test when applied to the forested FIA plots 
showed that:

1. Sometimes finer scale objects more closely 
represented the 3 by 3 pixel area values.

2. Often the 3 by 3 pixel area values were the same 
as the image object values. 

3. Sometimes the 3 by 3 pixel area values were 
different than the image object values. 

4. Rarely the coarser scale objects more closely 
represented the 3 by 3 pixel areas. 

MSAVI2, NDMI, and TCAP(3) from TM scene 3732 
and NDMI and TCAP(3) from TM scene 3833 had 
very low p values for the 3 by 3 pixel areas when 
compared to both scales of image objects, meaning 
that neither scale of image objects are the same as 
the 3 by 3 pixel areas for those particular image 
derivatives. Applying a Wilcoxon signed rank test for 
paired samples to the subset of quaking aspen plots 
(Table 3) had comparable results to that of the forested 
FIA test where similar derivatives were significantly 
different from the 3 by 3 pixel values at both scales. 

1. Often finer scale objects more closely 
represented the 3 by 3 pixel area values; 
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Table 3.—Results of the 3 by 3 neighborhood pixels compared to image objects for aspen plots with a 
relative cover ≥50 percent. P values less than α = 0.05 are bold.

TM Scene Pearson’s r Wilcoxon Signed Rank Test
(Path/Row)  N Image Derivative Scale 25 Scale 15 Scale 25 Scale 15

37/32	 88	 EVI	 0.83	 0.92	 0.0040	 0.0745
	 	 MSAVI2	 0.83	 0.89	 0.0098	 0.2078
	 	 NDMI	 0.85	 0.89	 0.3207	 0.8183
	 	 NDVI	 0.84	 0.89	 0.0118	 0.2123
	 	 PCA(1)	 0.85	 0.89	 0.4202	 0.1062
	 	 TCAP(1)	 0.85	 0.89	 0.2479	 0.0461
	 	 TCAP(2)	 0.83	 0.9	 0.0042	 0.1035
	 	 TCAP(3)	 0.87	 0.89	 0.5114	 0.7704

38/31	 34	 EVI	 0.91	 0.92	 0.9596	 0.1906
	 	 MSAVI2	 0.91	 0.94	 0.0249	 0.1629
	 	 NDMI	 0.91	 0.94	 0.0328	 0.2556
	 	 NDVI	 0.91	 0.94	 0.0299	 0.1682
	 	 PCA(1)	 0.9	 0.95	 0.1430	 0.0036
	 	 TCAP(1)	 0.9	 0.95	 0.1629	 0.0038
	 	 TCAP(2)	 0.92	 0.95	 0.3880	 0.8527
	 	 TCAP(3)	 0.91	 0.94	 0.0445	 0.2280

38/33	 43	 EVI	 0.89	 0.93	 0.0066	 0.0010
	 	 MSAVI2	 0.96	 0.97	 0.0006	 0.0002
	 	 NDMI	 0.9	 0.93	 0.0005	 0.0006
	 	 NDVI	 0.94	 0.96	 0.0006	 0.0001
	 	 PCA(1)	 0.99	 0.99	 0.9762	 0.9381
	 	 TCAP(1)	 0.99	 0.99	 0.7154	 0.6712
	 	 TCAP(2)	 0.93	 0.96	 0.0013	 0.0007
	 	 TCAP(3)	 0.9	 0.93	 0.0019	 0.0048

2. Sometimes the 3 by 3 pixel area values were the 
same as the image object values; 

3. Sometimes the 3 by 3 pixel area values were 
different than the image object values and 

4. Rarely the coarser scale objects more closely 
represented the 3 by 3 pixel areas. 

EVI, MSAVI2, NDMI, NDVI, TCAP(2), and TCAP(3) 
from TM scene 3833 all had very low p values for 
the 3 by 3 pixel areas when compared to both scales 
of image objects meaning that neither scale of image 
objects are the same as the 3 by 3 pixel areas for those 
particular image derivatives. 

The very low p values from both the forested FIA 
plots and quaking aspen plots may be attributed to 
complex forest stand characteristics (structure and 
composition) coupled with the local variance structure 
of the imagery and therein, the resulting image objects. 

In other words, the differences in the local variance 
structure related to the forest stand structure and 
composition with respect to the scale of the image 
objects generated for these scenes and for those 
particular derivatives. 

Additionally, the results of the Wilcoxon signed rank 
test for paired samples when applied to the subset of 
quaking aspen plots seems to infer that an even finer 
scale of image objects may be needed to delineate and 
characterize specific forest types more effectively. 

FUTURE WORK
Additional analyses is needed to further understand the 
relationships between forested FIA plots and image 
objects for use in producing continuous and thematic 
maps of forest attributes at the regional level. Finer 
scales of image objects may help to better delineate 
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smaller homogeneous forest stands, mixed forest 
stands where the proportions of a particular species 
(e.g., quaking aspen) are less than what is typically 
considered “dominant” (>50 percent relative cover), 
and forest structure. 
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