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AN EFFICIENT ESTIMATOR TO MONITOR  
RAPIDLY CHANGING FOREST CONDITIONS

Raymond L. Czaplewski, Michael T. Thompson, and Gretchen G. Moisen1

Abstract.—Extensive expanses of forest often change at a slow pace. In this common 
situation, FIA produces informative estimates of current status with the Moving Average 
(MA) method and post-stratification with a remotely sensed map of forest-nonforest 
cover. However, MA “smoothes out” estimates over time, which confounds analyses of 
temporal trends; and post-stratification limits gains from remote sensing. Time-series 
estimators, like the Kalman Filter (KF), better detect and analyze unexpected or rapid 
changes in dynamic forests. KF is a recursive multivariate model-based estimator that 
separates complex time-series of panel estimates and multi-sensor remotely sensed data 
into a sequence of smaller and more manageable components. Population-level results 
are disaggregated into expansion factors that assure additivity and simplify small area 
and small domain estimation. Other statistics gauge fit of alternative models to annual 
FIA panel data, which permits quantitative rankings among alternative cause-effect 
hypotheses.
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INTRODUCTION
The 1998 Report by the Blue Ribbon Panel on 
Forest Inventory and Analysis (FIA) motivated the 
comprehensive redesign of the FIA program (Bechtold 
and Patterson 2005). FIA replaced decadal periodic 
surveys with annual panel surveys to produce more 
timely analyses for every State. However, a single 
annual panel uses only 10 to 20 percent of the field 
plots available to a periodic survey. To improve 
precision, FIA uses a simple Moving Average (MA) 
of five or more annual panels. While design-unbiased 
as an estimator of the average conditions among 
multiple panels, MA is biased for time-series of 
annual estimators (Bechtold and Patterson 2005). 
This bias is acceptably small whenever net change is 
relatively minor, but not when landscapes are affected 
by unusually rapid changes. Concerns with the MA 

for annual trend analyses are escalating. In 2012, the 
National FIA User Group recommended “renewed 
efforts to investigate alternatives to the simple moving 
average for improved trend detection and estimation, 
… including short term projections (5 to 10 years).” 
We describe an estimator designed to satisfy this and 
previous recommendations from the National FIA User 
Group. 

MONITORING ANALYSES  
AND THE NATURE OF CHANGE
To some degree, every acre of every forest changes 
every year through predictable processes of stand 
dynamics, ambient disturbances, timber management, 
and socioeconomic forces. In a static landscape, 
changes in forest conditions and land use are nearly 
at equilibrium, and MA is an acceptable statistical 
estimator. However, other landscapes change more 
rapidly.

Unexpected change can be subtle, spatially ubiquitous, 
and undetected during early onset. An example is 
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the growth decline of southern pines during the 
1970s. Causes might have been changes in air 
pollution, climate, land use, and/or distribution of 
stand conditions (Gadbury and Schreuder 2004). 
Such changes are not well observed with remote 
sensing, although geospatial data on stressors (e.g., 
air pollution) contribute valuable circumstantial 
information. Sufficiently precise estimators require a 
large sample of FIA field plots, which implies analyses 
over large geographic areas (e.g., a multi-state 
ecoregion) and long time intervals (e.g., 5 to 20 years). 
Detailed analyses might include the small subsample 
of “Phase 3” Forest Health Monitoring plots (Bechtold 
and Patterson 2005). Cause-effect analyses might use 
model-based inference to compare alternative cause-
effect hypotheses (Gadbury and Schreuder 2004).

Other changes are episodic disturbances, which are 
often apparent with the naked eye. An example is 
severe mortality of western pines caused by outbreaks 
of mountain pine beetles. Other examples include 
changes in the extent of wildfires, timber harvest and 
management treatments, conversion and reversion 
among agricultural fields and forestlands, and 
development within the wildland–urban interface. 
Though locally intense, they might affect only 1 to 
5 percent of a forested landscape per year, and they 
are observed with a correspondingly small number of 
FIA plots. Annual remote sensing provides indicators 
that are well correlated with the extent, intensity and 
location of such changes. Remeasurements of FIA 
field plots at 5- to 10-year intervals monitor detailed 
tree-level consequences of stand-level changes.

Models of population processes are arguably essential 
for detailed monitoring. Model-based estimators 
increase precision with small sample sizes. A model 
can capture an analyst’s hypotheses regarding expected 
behavior of a forest population. Residual differences 
between model predictions and panel estimates 
detect deviations from expectations. Different models 
represent alternative sets of cause-effect hypotheses, 

and analyses of residuals compare the fit of each 
alternative to FIA field data. Models forecast future 
conditions based on past processes. 

Sensitivity of a monitoring program depends upon 
a sufficiently large sample size within each annual 
panel. Furthermore, numerous field plots are required 
for statistical methods that empirically compensate 
for systematic measurement errors with remotely 
sensed data. Hence, the target population must cover 
large geographic expanses, perhaps spanning several 
states. However, certain changes tend to “average out” 
as the extent of the population increases, and many 
monitoring questions involve small subpopulations.  
A partial solution is multivariate small area estimation, 
which uses diverse sets of full-coverage geospatial 
data (e.g., Landsat and MODIS) as predictors of field 
observations (e.g., Czaplewski 2010). 

A MODEL-BASED  
TIME-SERIES ESTIMATOR
The sample-survey literature covers a diverse 
collection of estimators for individual pieces of 
a statistical monitoring system. However, the 
multivariate “Kalman filter” (KF) estimator (Bar-
Shalom et al. 2001) can integrate all pieces into a 
single cohesive structure. The senior author is using a 
matrix language to develop software that implements 
the following.

KF is a time-series technique. It combines a design-
based panel estimator with a model-based estimator 
for expected changes in population parameters 
(Czaplewski and Thompson 2009). KF is a sequential 
recursive method. It starts at time t=1 with the first 
panel of field data and FIA’s design-based estimator. 
The resulting vector estimate of population parameters 
(i.e., “state-vector”) serves as initial conditions in 
a model for changes in the population as posited 
by the analyst. This multivariate linear model 
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predicts the state-vector at time t=2, including a 
covariance matrix for random errors propagated from 
time t=1 plus estimated prediction errors between 
times t=1 and t=2. The second panel of field plots 
provides an independent design-based estimate of 
corresponding population parameters for t=2. KF uses 
the multivariate composite estimator to “optimally” 
combine these competing model-based and design-
based estimates. The result is a single, more precise 
estimator at time t=2. This “best” estimate at time t=2 
serves as initial conditions for the transition model that 
predicts the state vector at time t=3. This sequential 
recursive technique proceeds for the entire time-series. 

Analyses of residual differences between model-
based predictions and design-based panel estimates 
help improve the estimated covariance matrix for 
model prediction errors, thereby mitigating bias in the 
model-based portion of the KF estimator. The model 
represents analysts’ understanding of population-level 
processes (Czaplewski and Thompson 2012) or a 
population-level aggregation of plot-level processes 
(see for example Healey et al., these proceedings). 
The model can forecast future conditions and the 
associated covariance matrix for random errors.

The state vector has partitions for each year. This 
autoregressive structure improves estimates for many 
time periods with each FIA panel. Its covariance 
matrix provides variance estimates for changes 
between 5- or 10-year intervals, which KF uses with 
corresponding design-based estimates from plot 
remeasurements to improve annual estimates of status 
and changes. 

The state vector may have hundreds of variables, 
and digital “round-off” errors can degrade numerical 
results. However, the engineering literature abounds 
with solutions that use the square root of a covariance 
matrix (e.g., Bar-Shalom et al. 2001). Covariance 
matrices are typically rank-deficient, and feasible 
estimates require thoughtful pivots of state-space.

KF computes a vector of “optimal” weights that 
combines each model- and design-based vector 
estimate at each time-step. Restrictions on those 
weights can impose inequality constraints. For 
example, the estimated annual mortality rate of insect-
infected live trees can exceed 100 percent if sampling 
errors in two independent annual panels are large. 
Inequality constraints force the estimated rate between 
0 and 100 percent. Those same population-level 
weights may be stored in the FIA plot-level database 
as time-series of multivariate expansion factors, one 
for each state variable, at the condition and tree levels 
(Czaplewski 2010). This step assures additivity across 
statistical tables, facilitates certain types of small 
domain and small area estimation, and potentially 
reduces certain difficulties in analyses with mixed-
condition plots.

Insufficient sample size causes sampling zeros, which 
can produce implausible estimates for “rare” variables. 
We collapse classification systems so that each 
category has at least 50 plots within each annual panel. 
Assuming no cross-classifications, annual sample size 
within Colorado’s forests would support only seven 
forest type groups, seven ownership categories, and 
seven tree species groups. KF expansion factors permit 
more detailed estimates within the FIA database, but 
the statistical efficiencies of those detailed estimates 
are suboptimal.

Czaplewski (2010) developed KF structures for 
multiple sources of multivariate remotely sensed 
and other geospatial data. Unlike post-stratification, 
geospatial variables may be continuous or categorical, 
with or without cross-classification. KF uses full-
coverage Landsat data or sample surveys with 
LIDAR or high-resolution aerial photography. This 
KF structure accommodates time-series of remotely 
sensed data, including annual change detection. 
Czaplewski (2010) illustrates compatible methods that 
use geospatial data for small-area estimates for special 
studies, which improves the compromise between 
large sample sizes and small analysis areas.
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DISCUSSION AND CONCLUSIONS
FIA analysts and user community require defensible 
estimates of trends in forest resources. Estimates at 
one point in time, such as forest area or amount of 
standing live biomass, have limited value. Detailed 
assessments of insect epidemics, such as the mountain 
pine beetle in the West, require reliable estimates 
of annual tree mortality over long timespans. 
Monitoring broad-scale trends in tree growth helps 
better understand effects of climate change. Before 
making major capital investments, a forest products 
company must know trends in timber volume, and 
their causes, within a modestly sized geographic area. 
Trends in tree removals are a substantial component of 
economic assessments, such as the effect of recessions 
on the forest product sector. To serve these analysis 
requirements, FIA requires an easily understood 
statistical estimator that supports diverse analyses of 
time-series with panel data.

Although the MA estimator is easily understood, it can 
have substantial lag-bias. On the other hand, the purely 
design-based estimator for each independent panel is 
unbiased for annual monitoring. Unfortunately, the 
latter is limited by small sample sizes. Annual trends 
can be estimated only through differences among 
estimates from independent panels (e.g., independent 
estimates of lodgepole pine in Montana for 2010, 
2011, and 2012). Sampling error can exceed net annual 
change, however, obscuring major changes in a rapidly 
changing population, or producing statistical estimates 
of change that misleadingly appear large for a truly 
static population. Furthermore, independent panels 
limit the ability to understand the causes of annual 
change. Remeasurements of individual FIA plots at 5- 
or 10-year intervals help better understand long-term 
changes at the plot and tree scales, but this protracted 
remeasurement interval obscures annual trends. 
Regardless, the design-based approach, by itself, 
restricts an analyst’s ability to quantify and interpret 
trends at the annual time scale.

The multivariate Kalman filter is a relatively simple 
alternative in an annual monitoring program. It fully 
utilizes all available remotely sensed data. It stores 
results as condition- and tree-level expansion factors, 
which simplifies analyses. Its structure helps detect 
unexpected changes and rank competing sets of 
cause-effect hypotheses. This model-based approach 
is inherently multidisciplinary, however, and success 
requires teamwork among analysts, modelers, remote 
sensing technologists, computer scientists, and 
statisticians.
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