Search
Browse by Subject
Contact Information

Northern Research Station
11 Campus Blvd., Suite 200
Newtown Square, PA 19073
(610) 557-4017
(610) 557-4132 TTY/TDD

You are here: NRS Home / Publications & Data / Publication Details
Publication Details

Title: Subpixel urban land cover estimation: comparing cubist, random forests, and support vector regression

Author: Walton, Jeffrey T.

Year: 2008

Publication: Photogrammetric Engineering & Remote Sensing. 74(10): 1213-1222.

Abstract: Three machine learning subpixel estimation methods (Cubist, Random Forests, and support vector regression) were applied to estimate urban cover. Urban forest canopy cover and impervious surface cover were estimated from Landsat-7 ETM+ imagery using a higher resolution cover map resampled to 30 m as training and reference data. Three different band combinations (reflectance, tasseled cap, and both reflectance and tasseled cap plus thermal) were compared for their effectiveness with each of the methods. Thirty different training site number and size combinations were also tested. Support vector regression on the tasseled cap bands was found to be the best estimator for urban forest canopy cover, while Cubist performed best using the reflectance plus tasseled cap band combination when predicting impervious surface cover. More training data partitioned in many small training sites generally produces better estimation results.

Last Modified: 2/6/2009


Publication Toolbox

This document is in PDF format. You can obtain a free PDF reader from Adobe.